These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26651741)

  • 1. Structural versus dynamical origins of mean-field behavior in a self-organized critical model of neuronal avalanches.
    Moosavi SA; Montakhab A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052804. PubMed ID: 26651741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mean-field behavior as a result of noisy local dynamics in self-organized criticality: neuroscience implications.
    Moosavi SA; Montakhab A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052139. PubMed ID: 25353771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical avalanches and subsampling in map-based neural networks coupled with noisy synapses.
    Girardi-Schappo M; Kinouchi O; Tragtenberg MH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):024701. PubMed ID: 24032969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity of synaptic input connectivity regulates spike-based neuronal avalanches.
    Wu S; Zhang Y; Cui Y; Li H; Wang J; Guo L; Xia Y; Yao D; Xu P; Guo D
    Neural Netw; 2019 Feb; 110():91-103. PubMed ID: 30508808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organization and neuronal avalanches in networks of dissociated cortical neurons.
    Pasquale V; Massobrio P; Bologna LL; Chiappalone M; Martinoia S
    Neuroscience; 2008 Jun; 153(4):1354-69. PubMed ID: 18448256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches.
    Michiels van Kessenich L; de Arcangelis L; Herrmann HJ
    Sci Rep; 2016 Aug; 6():32071. PubMed ID: 27534901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avalanches in self-organized critical neural networks: a minimal model for the neural SOC universality class.
    Rybarsch M; Bornholdt S
    PLoS One; 2014; 9(4):e93090. PubMed ID: 24743324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical networks, power laws, and neuronal avalanches.
    Friedman EJ; Landsberg AS
    Chaos; 2013 Mar; 23(1):013135. PubMed ID: 23556972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can power-law scaling and neuronal avalanches arise from stochastic dynamics?
    Touboul J; Destexhe A
    PLoS One; 2010 Feb; 5(2):e8982. PubMed ID: 20161798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refractory period in network models of excitable nodes: self-sustaining stable dynamics, extended scaling region and oscillatory behavior.
    Moosavi SA; Montakhab A; Valizadeh A
    Sci Rep; 2017 Aug; 7(1):7107. PubMed ID: 28769096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic noise facilitates the emergence of self-organized criticality in the Caenorhabditis elegans neuronal network.
    Çiftçi K
    Network; 2018; 29(1-4):1-19. PubMed ID: 30340443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite-size effects and dynamics of giant transition of a continuum quorum percolation model on random networks.
    Métens S; Monceau P; Renault R; Bottani S
    Phys Rev E; 2016 Mar; 93(3):032112. PubMed ID: 27078297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emergence of power laws in noncritical neuronal systems.
    Faqeeh A; Osat S; Radicchi F; Gleeson JP
    Phys Rev E; 2019 Jul; 100(1-1):010401. PubMed ID: 31499795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?
    Galinsky VL; Frank LR
    Front Phys (Beijing); 2023 Aug; 18(4):. PubMed ID: 37008280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organized criticality in a bead pile.
    Costello RM; Cruz KL; Egnatuk C; Jacobs DT; Krivos MC; Louis TS; Urban RJ; Wagner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 1):041304. PubMed ID: 12786359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal avalanches and time-frequency representations in stimulus-evoked activity.
    Arviv O; Goldstein A; Shriki O
    Sci Rep; 2019 Sep; 9(1):13319. PubMed ID: 31527749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring neuronal avalanches in disordered systems with absorbing states.
    Girardi-Schappo M; Tragtenberg MHR
    Phys Rev E; 2018 Apr; 97(4-1):042415. PubMed ID: 29758702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic oscillations and dragon king avalanches in self-organized quasi-critical systems.
    Kinouchi O; Brochini L; Costa AA; Campos JGF; Copelli M
    Sci Rep; 2019 Mar; 9(1):3874. PubMed ID: 30846773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical properties of avalanches in networks.
    Larremore DB; Carpenter MY; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066131. PubMed ID: 23005186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.