BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 26651792)

  • 1. Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows.
    Minier JP; Profeta C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053020. PubMed ID: 26651792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stokes number effects in Lagrangian stochastic models of dispersed two-phase flows.
    Reynolds AM
    J Colloid Interface Sci; 2004 Jul; 275(1):328-35. PubMed ID: 15158418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drift-free kinetic equations for turbulent dispersion.
    Bragg A; Swailes DC; Skartlien R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056306. PubMed ID: 23214875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is the kinetic equation for turbulent gas-particle flows ill posed?
    Reeks M; Swailes DC; Bragg AD
    Phys Rev E; 2018 Feb; 97(2-1):023104. PubMed ID: 29548204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditional Lagrangian acceleration statistics in turbulent flows with Gaussian-distributed velocities.
    Aringazin AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036301. PubMed ID: 15524627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the transport equation for probability density functions of turbulent vorticity fields.
    Li J; Qian Z; Zhou M
    Proc Math Phys Eng Sci; 2022 Jan; 478(2257):20210534. PubMed ID: 35153610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probabilistic density function method for nonlinear dynamical systems driven by colored noise.
    Barajas-Solano DA; Tartakovsky AM
    Phys Rev E; 2016 May; 93(5):052121. PubMed ID: 27300844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic least-squares kernel density modeling of Fokker-Planck equations with application to neural population.
    Shotorban B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046706. PubMed ID: 20481859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersed phase of particles in rotating turbulent fluid flows.
    Pandya RV; Stansell P; Cosgrove J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):025301. PubMed ID: 15447536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic dynamo model for subcritical transition.
    Fedotov S; Bashkirtseva I; Ryashko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066307. PubMed ID: 16906976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probability density function model equation for particle charging in a homogeneous dusty plasma.
    Pandya RV; Mashayek F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036405. PubMed ID: 11580452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotational Brownian motion of axisymmetric particles in a Maxwell fluid.
    Volkov VS; Leonov AI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051113. PubMed ID: 11735906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermittency, scaling, and the Fokker-Planck approach to fluctuations of the solar wind bulk plasma parameters as seen by the WIND spacecraft.
    Hnat B; Chapman SC; Rowlands G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056404. PubMed ID: 12786284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lagrangian formulation of turbulent premixed combustion.
    Pagnini G; Bonomi E
    Phys Rev Lett; 2011 Jul; 107(4):044503. PubMed ID: 21867012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Formulation of Lagrangian Stochastic Models for Heavy-Particle Trajectories.
    Reynolds AM
    J Colloid Interface Sci; 2000 Dec; 232(2):260-268. PubMed ID: 11097759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistics of Lagrangian velocities in turbulent flows.
    Friedrich R
    Phys Rev Lett; 2003 Feb; 90(8):084501. PubMed ID: 12633431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows.
    Rolland J
    Phys Rev E; 2018 Feb; 97(2-1):023109. PubMed ID: 29548159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic formalism and hierarchy of models for polydispersed turbulent two-phase flows.
    Peirano E; Minier JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046301. PubMed ID: 12006007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.