BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 26651851)

  • 1. Field study of nitrous oxide production with in situ aeration in a closed landfill site.
    Nag M; Shimaoka T; Nakayama H; Komiya T; Xiaoli C
    J Air Waste Manag Assoc; 2016 Mar; 66(3):280-7. PubMed ID: 26651851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrous oxide production during nitrification from organic solid waste under temperature and oxygen conditions.
    Nag M; Shimaoka T; Komiya T
    Environ Technol; 2016 Nov; 37(22):2890-7. PubMed ID: 27028330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of top covers supporting aerobic in situ stabilization of old landfills--an experimental simulation in lysimeters.
    Hrad M; Huber-Humer M; Wimmer B; Reichenauer TG
    Waste Manag; 2012 Dec; 32(12):2324-35. PubMed ID: 22749719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of rainfall on the diurnal variations of CH₄, CO₂, and N₂O fluxes from a municipal solid waste landfill.
    Zhang H; Yan X; Cai Z; Zhang Y
    Sci Total Environ; 2013 Jan; 442():73-6. PubMed ID: 23178766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: strong N2O hotspots at the working face.
    Harborth P; Fuss R; Münnich K; Flessa H; Fricke K
    Waste Manag; 2013 Oct; 33(10):2099-107. PubMed ID: 23453435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion.
    Hrad M; Gamperling O; Huber-Humer M
    Waste Manag; 2013 Oct; 33(10):2061-73. PubMed ID: 23428564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of aeration position on the spatial distribution and reduction of pollutants in the landfill stabilization process--a pilot scale study.
    Chai X; Hao Y; Shimaoka T; Nakayama H; Komiya T; Zhao Y
    Waste Manag Res; 2013 Jan; 31(1):41-9. PubMed ID: 23076266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of intermittent aerations on leachate quality and greenhouse gas reduction in the aerobic-anaerobic landfill method.
    Nag M; Shimaoka T; Komiya T
    Waste Manag; 2016 Sep; 55():71-82. PubMed ID: 26514311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste.
    Wimmer B; Hrad M; Huber-Humer M; Watzinger A; Wyhlidal S; Reichenauer TG
    Waste Manag; 2013 Oct; 33(10):2083-90. PubMed ID: 23540355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-controlled biogenic emissions to the atmosphere from Lazareto landfill, Tenerife, Canary Islands.
    Nolasco D; Lima RN; Hernández PA; Pérez NM
    Environ Sci Pollut Res Int; 2008 Jan; 15(1):51-60. PubMed ID: 18306888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research advances in control of N2O emission from municipal solid waste landfill sites].
    Cai CY; Li B; Lü HH; Wu WX
    Ying Yong Sheng Tai Xue Bao; 2012 May; 23(5):1415-22. PubMed ID: 22919857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrous oxide and methane emissions from food waste composting at different temperatures.
    Ermolaev E; Jarvis Å; Sundberg C; Smårs S; Pell M; Jönsson H
    Waste Manag; 2015 Dec; 46():113-9. PubMed ID: 26321382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating CO(2)-credits through landfill in situ aeration.
    Ritzkowski M; Stegmann R
    Waste Manag; 2010 Apr; 30(4):702-6. PubMed ID: 20022235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Landfill CH4 oxidation by mineralized refuse: effects of NH4(+)-N incubation, water content and temperature.
    Zhang Y; Zhang H; Jia B; Wang W; Zhu W; Huang T; Kong X
    Sci Total Environ; 2012 Jun; 426():406-13. PubMed ID: 22542229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamental processes and implications during in situ aeration of old landfills.
    Ritzkowski M; Heyer KU; Stegmann R
    Waste Manag; 2006; 26(4):356-72. PubMed ID: 16442789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nitrogen conversion and environmental factors on landfill CH4 oxidation and N2O emissions in aged refuse.
    Zhang H; Zhao K; Yan X; Sun Q; Li Y; Zhang Y; Zun Z; Ke F
    J Environ Manage; 2013 Sep; 126():174-81. PubMed ID: 23683338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant.
    Aboobakar A; Cartmell E; Stephenson T; Jones M; Vale P; Dotro G
    Water Res; 2013 Feb; 47(2):524-34. PubMed ID: 23159006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N2O and NH3 emissions from a bioreactor landfill operated under limited aerobic degradation conditions.
    He P; Yang N; Gu H; Zhang H; Shao L
    J Environ Sci (China); 2011; 23(6):1011-9. PubMed ID: 22066225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aeration of the teuftal landfill: Field scale concept and lab scale simulation.
    Ritzkowski M; Walker B; Kuchta K; Raga R; Stegmann R
    Waste Manag; 2016 Sep; 55():99-107. PubMed ID: 27297047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N₂O emission from a combined ex-situ nitrification and in-situ denitrification bioreactor landfill.
    Wang YN; Sun YJ; Wang L; Sun XJ; Wu H; Bian RX; Li JJ
    Waste Manag; 2014 Nov; 34(11):2209-17. PubMed ID: 25062936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.