These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 26651874)

  • 1. Inexpensive Method for Selecting Receptor Structures for Virtual Screening.
    Huang Z; Wong CF
    J Chem Inf Model; 2016 Jan; 56(1):21-34. PubMed ID: 26651874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based virtual screening approach for discovery of covalently bound ligands.
    Toledo Warshaviak D; Golan G; Borrelli KW; Zhu K; Kalid O
    J Chem Inf Model; 2014 Jul; 54(7):1941-50. PubMed ID: 24932913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ensemble docking into multiple crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichments.
    Craig IR; Essex JW; Spiegel K
    J Chem Inf Model; 2010 Apr; 50(4):511-24. PubMed ID: 20222690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating virtual screening methods: good and bad metrics for the "early recognition" problem.
    Truchon JF; Bayly CI
    J Chem Inf Model; 2007; 47(2):488-508. PubMed ID: 17288412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy.
    Cross JB; Thompson DC; Rai BK; Baber JC; Fan KY; Hu Y; Humblet C
    J Chem Inf Model; 2009 Jun; 49(6):1455-74. PubMed ID: 19476350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel inhibitor discovery through virtual screening against multiple protein conformations generated via ligand-directed modeling: a maternal embryonic leucine zipper kinase example.
    Mahasenan KV; Li C
    J Chem Inf Model; 2012 May; 52(5):1345-55. PubMed ID: 22540736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cosolvent-Based Protein Pharmacophore for Ligand Enrichment in Virtual Screening.
    Arcon JP; Defelipe LA; Lopez ED; Burastero O; Modenutti CP; Barril X; Marti MA; Turjanski AG
    J Chem Inf Model; 2019 Aug; 59(8):3572-3583. PubMed ID: 31373819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VS-APPLE: A Virtual Screening Algorithm Using Promiscuous Protein-Ligand Complexes.
    Okuno T; Kato K; Terada TP; Sasai M; Chikenji G
    J Chem Inf Model; 2015 Jun; 55(6):1108-19. PubMed ID: 26057716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recipes for the selection of experimental protein conformations for virtual screening.
    Rueda M; Bottegoni G; Abagyan R
    J Chem Inf Model; 2010 Jan; 50(1):186-93. PubMed ID: 20000587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of MM-PBSA rescoring of docking poses.
    Thompson DC; Humblet C; Joseph-McCarthy D
    J Chem Inf Model; 2008 May; 48(5):1081-91. PubMed ID: 18465849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using consensus-shape clustering to identify promiscuous ligands and protein targets and to choose the right query for shape-based virtual screening.
    Pérez-Nueno VI; Ritchie DW
    J Chem Inf Model; 2011 Jun; 51(6):1233-48. PubMed ID: 21604699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ranking targets in structure-based virtual screening of three-dimensional protein libraries: methods and problems.
    Kellenberger E; Foata N; Rognan D
    J Chem Inf Model; 2008 May; 48(5):1014-25. PubMed ID: 18412328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HierVLS hierarchical docking protocol for virtual ligand screening of large-molecule databases.
    Floriano WB; Vaidehi N; Zamanakos G; Goddard WA
    J Med Chem; 2004 Jan; 47(1):56-71. PubMed ID: 14695820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study.
    Kooistra AJ; Leurs R; de Esch IJ; de Graaf C
    J Chem Inf Model; 2015 May; 55(5):1045-61. PubMed ID: 25848966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual screening of PRK1 inhibitors: ensemble docking, rescoring using binding free energy calculation and QSAR model development.
    Slynko I; Scharfe M; Rumpf T; Eib J; Metzger E; Schüle R; Jung M; Sippl W
    J Chem Inf Model; 2014 Jan; 54(1):138-50. PubMed ID: 24377786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible receptor docking for drug discovery.
    Wong CF
    Expert Opin Drug Discov; 2015; 10(11):1189-200. PubMed ID: 26313123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.