These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2730 related articles for article (PubMed ID: 26652038)
1. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells. Kashyap S; Singh N; Surnar B; Jayakannan M Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038 [TBL] [Abstract][Full Text] [Related]
2. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells. Aluri R; Jayakannan M Biomacromolecules; 2017 Jan; 18(1):189-200. PubMed ID: 28064504 [TBL] [Abstract][Full Text] [Related]
3. Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on π-Conjugated Core and Biodegradable Polymer Arms. Kulkarni B; Surnar B; Jayakannan M Biomacromolecules; 2016 Mar; 17(3):1004-16. PubMed ID: 26842888 [TBL] [Abstract][Full Text] [Related]
4. Multistimuli-Responsive Amphiphilic Poly(ester-urethane) Nanoassemblies Based on l-Tyrosine for Intracellular Drug Delivery to Cancer Cells. Aluri R; Saxena S; Joshi DC; Jayakannan M Biomacromolecules; 2018 Jun; 19(6):2166-2181. PubMed ID: 29664622 [TBL] [Abstract][Full Text] [Related]
5. Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells. Pramod PS; Shah R; Jayakannan M Nanoscale; 2015 Apr; 7(15):6636-52. PubMed ID: 25797322 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of doxorubicin nanoparticles by controlled antisolvent precipitation for enhanced intracellular delivery. Tam YT; To KK; Chow AH Colloids Surf B Biointerfaces; 2016 Mar; 139():249-58. PubMed ID: 26724466 [TBL] [Abstract][Full Text] [Related]
7. In situ DOX-calcium phosphate mineralized CPT-amphiphilic gelatin nanoparticle for intracellular controlled sequential release of multiple drugs. Li WM; Su CW; Chen YW; Chen SY Acta Biomater; 2015 Mar; 15():191-9. PubMed ID: 25542535 [TBL] [Abstract][Full Text] [Related]
8. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. Sahoo B; Devi KS; Banerjee R; Maiti TK; Pramanik P; Dhara D ACS Appl Mater Interfaces; 2013 May; 5(9):3884-93. PubMed ID: 23551195 [TBL] [Abstract][Full Text] [Related]
9. Thermally controlled release of anticancer drug from self-assembled γ-substituted amphiphilic poly(ε-caprolactone) micellar nanoparticles. Cheng Y; Hao J; Lee LA; Biewer MC; Wang Q; Stefan MC Biomacromolecules; 2012 Jul; 13(7):2163-73. PubMed ID: 22681332 [TBL] [Abstract][Full Text] [Related]
10. Poly(styrene-alt-maleic anhydride)-based diblock copolymer micelles exhibit versatile hydrophobic drug loading, drug-dependent release, and internalization by multidrug resistant ovarian cancer cells. Baranello MP; Bauer L; Benoit DS Biomacromolecules; 2014 Jul; 15(7):2629-41. PubMed ID: 24955779 [TBL] [Abstract][Full Text] [Related]
12. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells. Surnar B; Sharma K; Jayakannan M Nanoscale; 2015 Nov; 7(42):17964-79. PubMed ID: 26465291 [TBL] [Abstract][Full Text] [Related]
13. Synergistic breast tumor cell killing achieved by intracellular co-delivery of doxorubicin and disulfiram via core-shell-corona nanoparticles. Tao X; Gou J; Zhang Q; Tan X; Ren T; Yao Q; Tian B; Kou L; Zhang L; Tang X Biomater Sci; 2018 Jun; 6(7):1869-1881. PubMed ID: 29808221 [TBL] [Abstract][Full Text] [Related]
14. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. Yang X; Grailer JJ; Rowland IJ; Javadi A; Hurley SA; Matson VZ; Steeber DA; Gong S ACS Nano; 2010 Nov; 4(11):6805-17. PubMed ID: 20958084 [TBL] [Abstract][Full Text] [Related]
15. Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery. Wang G; Maciel D; Wu Y; Rodrigues J; Shi X; Yuan Y; Liu C; Tomás H; Li Y ACS Appl Mater Interfaces; 2014 Oct; 6(19):16687-95. PubMed ID: 25167168 [TBL] [Abstract][Full Text] [Related]
16. Polymersomes from dual responsive block copolymers: drug encapsulation by heating and acid-triggered release. Qiao ZY; Ji R; Huang XN; Du FS; Zhang R; Liang DH; Li ZC Biomacromolecules; 2013 May; 14(5):1555-63. PubMed ID: 23570500 [TBL] [Abstract][Full Text] [Related]
17. Development of l-Amino-Acid-Based Hydroxyl Functionalized Biodegradable Amphiphilic Polyesters and Their Drug Delivery Capabilities to Cancer Cells. Saxena S; Jayakannan M Biomacromolecules; 2020 Jan; 21(1):171-187. PubMed ID: 31592651 [TBL] [Abstract][Full Text] [Related]
18. Smart pH-sensitive micelles based on redox degradable polymers as DOX/GNPs carriers for controlled drug release and CT imaging. Xiong D; Zhang X; Peng S; Gu H; Zhang L Colloids Surf B Biointerfaces; 2018 Mar; 163():29-40. PubMed ID: 29278801 [TBL] [Abstract][Full Text] [Related]
19. Reduction-sensitive micelles with sheddable PEG shells self-assembled from a Y-shaped amphiphilic polymer for intracellular doxorubicine release. Cui C; Yu P; Wu M; Zhang Y; Liu L; Wu B; Wang CX; Zhuo RX; Huang SW Colloids Surf B Biointerfaces; 2015 May; 129():137-45. PubMed ID: 25843367 [TBL] [Abstract][Full Text] [Related]
20. Melt Polycondensation Strategy for Amide-Functionalized l-Aspartic Acid Amphiphilic Polyester Nano-assemblies and Enzyme-Responsive Drug Delivery in Cancer Cells. Khuddus M; Jayakannan M Biomacromolecules; 2023 Jun; 24(6):2643-2660. PubMed ID: 37186892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]