These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26652048)

  • 1. Influence of Surrounding Cations on the Surface Degradation of Magnesium Alloy Implants under a Compressive Pressure.
    Ning C; Zhou L; Zhu Y; Li Y; Yu P; Wang S; He T; Li W; Tan G; Wang Y; Mao C
    Langmuir; 2015 Dec; 31(50):13561-70. PubMed ID: 26652048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro investigation of biodegradable polymeric coating for corrosion resistance of Mg-6Zn-Ca alloy in simulated body fluid.
    Gaur S; Singh Raman RK; Khanna AS
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():91-101. PubMed ID: 25063097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating.
    Rojaee R; Fathi M; Raeissi K
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3817-25. PubMed ID: 23910282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy.
    Gu XN; Li N; Zhou WR; Zheng YF; Zhao X; Cai QZ; Ruan L
    Acta Biomater; 2011 Apr; 7(4):1880-9. PubMed ID: 21145440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalization of biodegradable magnesium alloy implants with alkylphosphonate self-assembled films.
    Grubač Z; Metikoš-Huković M; Babić R; Rončević IŠ; Petravić M; Peter R
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2152-8. PubMed ID: 23498243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study on factors affecting the degradation of magnesium and a magnesium-yttrium alloy for biomedical applications.
    Johnson I; Liu H
    PLoS One; 2013; 8(6):e65603. PubMed ID: 23799028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys.
    Gu XN; Zheng YF; Chen LJ
    Biomed Mater; 2009 Dec; 4(6):065011. PubMed ID: 19966381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid.
    Kannan MB; Raman RK
    Biomaterials; 2008 May; 29(15):2306-14. PubMed ID: 18313746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemocompatibility of plasma electrolytic oxidation (PEO) coated Mg-RE and Mg-Zn-Ca alloys for vascular scaffold applications.
    Kröger N; Kopp A; Staudt M; Rusu M; Schuh A; Liehn EA
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():819-826. PubMed ID: 30184811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of living cells (L929) on the biodegradation of magnesium-calcium alloy.
    Kannan MB; Yamamoto A; Khakbaz H
    Colloids Surf B Biointerfaces; 2015 Feb; 126():603-6. PubMed ID: 25637449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between aggressive ions and the surface of a magnesium-yttrium alloy.
    Johnson I; Perchy D; Liu H
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5670-3. PubMed ID: 23367216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation mechanism of magnesium alloy stent under simulated human micro-stress environment.
    Liu D; Hu S; Yin X; Liu J; Jia Z; Li Q
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():263-270. PubMed ID: 29519438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro interactions of blood, platelet, and fibroblast with biodegradable magnesium-zinc-strontium alloys.
    Nguyen TY; Cipriano AF; Guan RG; Zhao ZY; Liu H
    J Biomed Mater Res A; 2015 Sep; 103(9):2974-86. PubMed ID: 25690931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment.
    Xin Y; Huo K; Tao H; Tang G; Chu PK
    Acta Biomater; 2008 Nov; 4(6):2008-15. PubMed ID: 18571486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanistic study of in vitro degradation of magnesium alloy using electrochemical techniques.
    Bobby Kannan M; Singh RK
    J Biomed Mater Res A; 2010 Jun; 93(3):1050-5. PubMed ID: 19753621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface integrity and process mechanics of laser shock peening of novel biodegradable magnesium-calcium (Mg-Ca) alloy.
    Sealy MP; Guo YB
    J Mech Behav Biomed Mater; 2010 Oct; 3(7):488-96. PubMed ID: 20696413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mg-Zn-Y alloys with long-period stacking ordered structure: in vitro assessments of biodegradation behavior.
    Zhao X; Shi LL; Xu J
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3627-37. PubMed ID: 23910258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of dynamic compressive loading on the in vitro degradation behavior of pure PLA and Mg/PLA composite.
    Li X; Qi C; Han L; Chu C; Bai J; Guo C; Xue F; Shen B; Chu PK
    Acta Biomater; 2017 Dec; 64():269-278. PubMed ID: 28782722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of SaOS-2 cells on corrosion behavior of cast Mg-2.0Zn0.98Mn magnesium alloy.
    Witecka A; Yamamoto A; Święszkowski W
    Colloids Surf B Biointerfaces; 2017 Feb; 150():288-296. PubMed ID: 27810129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure and degradation performance of biodegradable Mg-Si-Sr implant alloys.
    Gil-Santos A; Marco I; Moelans N; Hort N; Van der Biest O
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():25-34. PubMed ID: 27987705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.