BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26652343)

  • 21. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications.
    Gorain B; Choudhury H; Pandey M; Kesharwani P; Abeer MM; Tekade RK; Hussain Z
    Biomed Pharmacother; 2018 Aug; 104():496-508. PubMed ID: 29800914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoengineered Electroconductive Collagen-Based Cardiac Patch for Infarcted Myocardium Repair.
    Hosoyama K; Ahumada M; McTiernan CD; Davis DR; Variola F; Ruel M; Liang W; Suuronen EJ; Alarcon EI
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44668-44677. PubMed ID: 30508481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.
    Hussain A; Collins G; Yip D; Cho CH
    Biotechnol Bioeng; 2013 Feb; 110(2):637-47. PubMed ID: 22991229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimizing Anisotropic Polyurethane Scaffolds to Mechanically Match with Native Myocardium.
    Xu C; Okpokwasili C; Huang Y; Shi X; Wu J; Liao J; Tang L; Hong Y
    ACS Biomater Sci Eng; 2020 May; 6(5):2757-2769. PubMed ID: 33313394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gold nano-decorated aligned polyurethane nanofibers for enhancement of neurite outgrowth and elongation.
    Demir US; Shahbazi R; Calamak S; Ozturk S; Gultekinoglu M; Ulubayram K
    J Biomed Mater Res A; 2018 Jun; 106(6):1604-1613. PubMed ID: 29427534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation, characterization and blood compatibility assessment of a novel electrospun nanocomposite comprising polyurethane and ayurvedic-indhulekha oil for tissue engineering applications.
    Ayyar M; Mani MP; Jaganathan SK; Rathanasamy R
    Biomed Tech (Berl); 2018 Jun; 63(3):245-253. PubMed ID: 28678733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electroactive graphene composite scaffolds for cardiac tissue engineering.
    Hitscherich P; Aphale A; Gordan R; Whitaker R; Singh P; Xie LH; Patra P; Lee EJ
    J Biomed Mater Res A; 2018 Nov; 106(11):2923-2933. PubMed ID: 30325093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application.
    Baheiraei N; Yeganeh H; Ai J; Gharibi R; Azami M; Faghihi F
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():24-37. PubMed ID: 25280676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoluminescent functionalized carbon quantum dots loaded electroactive Silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering.
    Yan C; Ren Y; Sun X; Jin L; Liu X; Chen H; Wang K; Yu M; Zhao Y
    J Photochem Photobiol B; 2020 Jan; 202():111680. PubMed ID: 31810038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multifunctional degradable electronic scaffolds for cardiac tissue engineering.
    Feiner R; Fleischer S; Shapira A; Kalish O; Dvir T
    J Control Release; 2018 Jul; 281():189-195. PubMed ID: 29782947
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology.
    Fromstein JD; Zandstra PW; Alperin C; Rockwood D; Rabolt JF; Woodhouse KA
    Tissue Eng Part A; 2008 Mar; 14(3):369-78. PubMed ID: 18333789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Argon plasma modification promotes adipose derived stem cells osteogenic and chondrogenic differentiation on nanocomposite polyurethane scaffolds; implications for skeletal tissue engineering.
    Griffin MF; Ibrahim A; Seifalian AM; Butler PEM; Kalaskar DM; Ferretti P
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110085. PubMed ID: 31546386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review: fabrication of porous polyurethane scaffolds.
    Janik H; Marzec M
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():586-91. PubMed ID: 25579961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and characterization of an electroconductive scaffold for cardiomyocytes based biomedical assays.
    Parchehbaf-Kashani M; Sepantafar M; Talkhabi M; Sayahpour FA; Baharvand H; Pahlavan S; Rajabi S
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110603. PubMed ID: 32228891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A feasibility study of a multimodal stimulation bioreactor for the conditioning of stem cell seeded cardiac patches via electrical impulses and pulsatile perfusion.
    Herrmann FEM; Lehner A; Koenig F; Hollweck T; Fano C; Dauner M; Eissner G; Hagl C; Akra B
    Biomed Mater Eng; 2019; 30(1):37-48. PubMed ID: 30530957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering.
    Parrag IC; Zandstra PW; Woodhouse KA
    Biotechnol Bioeng; 2012 Mar; 109(3):813-22. PubMed ID: 22006660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold nanorods reinforced silk fibroin nanocomposite for peripheral nerve tissue engineering applications.
    Afjeh-Dana E; Naserzadeh P; Nazari H; Mottaghitalab F; Shabani R; Aminii N; Mehravi B; Rostami FT; Joghataei MT; Mousavizadeh K; Ashtari K
    Int J Biol Macromol; 2019 May; 129():1034-1039. PubMed ID: 30742919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional poly-(ε-caprolactone) nanofibrous scaffolds directly promote the cardiomyocyte differentiation of murine-induced pluripotent stem cells through Wnt/β-catenin signaling.
    Chen Y; Zeng D; Ding L; Li XL; Liu XT; Li WJ; Wei T; Yan S; Xie JH; Wei L; Zheng QS
    BMC Cell Biol; 2015 Sep; 16():22. PubMed ID: 26335746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.