BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 26652348)

  • 1. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel.
    He J; Chen R; Lu Y; Zhan L; Liu Y; Li D; Jin Z
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():53-60. PubMed ID: 26652348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-casting approach for vascular networks in cellularized hydrogels.
    Justin AW; Brooks RA; Markaki AE
    J R Soc Interface; 2016 Dec; 13(125):. PubMed ID: 27928031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template.
    Wang XY; Jin ZH; Gan BW; Lv SW; Xie M; Huang WH
    Lab Chip; 2014 Aug; 14(15):2709-16. PubMed ID: 24887141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking.
    Irvine SA; Agrawal A; Lee BH; Chua HY; Low KY; Lau BC; Machluf M; Venkatraman S
    Biomed Microdevices; 2015 Feb; 17(1):16. PubMed ID: 25653062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gelatin-based micro-hydrogel carrying genetically engineered human endothelial cells for neovascularization.
    Choi YH; Kim SH; Kim IS; Kim K; Kwon SK; Hwang NS
    Acta Biomater; 2019 Sep; 95():285-296. PubMed ID: 30710712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element.
    Golden AP; Tien J
    Lab Chip; 2007 Jun; 7(6):720-5. PubMed ID: 17538713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro vascular chip using 3D printing-enabled hydrogel casting.
    Yang L; Shridhar SV; Gerwitz M; Soman P
    Biofabrication; 2016 Aug; 8(3):035015. PubMed ID: 27563030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid fabrication of gelatin-based scaffolds with prevascularized channels for organ regeneration.
    Hu Q; Tang H; Yao Y; Liu S; Zhang H; Ramalingam M
    Biomed Mater; 2021 Apr; 16(4):. PubMed ID: 33730706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels.
    Lee W; Lee V; Polio S; Keegan P; Lee JH; Fischer K; Park JK; Yoo SS
    Biotechnol Bioeng; 2010 Apr; 105(6):1178-86. PubMed ID: 19953677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of perfusable vasculatures by using micromolding and electrochemical cell transfer.
    Osaki T; Kakegawa T; Mochizuki N; Fukuda J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6655-8. PubMed ID: 24111269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels.
    Kageyama T; Kakegawa T; Osaki T; Enomoto J; Ito T; Nittami T; Fukuda J
    Biofabrication; 2014 Jun; 6(2):025006. PubMed ID: 24658207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vessel-on-a-chip with Hydrogel-based Microfluidics.
    Nie J; Gao Q; Wang Y; Zeng J; Zhao H; Sun Y; Shen J; Ramezani H; Fu Z; Liu Z; Xiang M; Fu J; Zhao P; Chen W; He Y
    Small; 2018 Nov; 14(45):e1802368. PubMed ID: 30307698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame.
    Song K; Li L; Li W; Zhu Y; Jiao Z; Lim M; Fang M; Shi F; Wang L; Liu T
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():384-92. PubMed ID: 26117769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-by-layer micromolding of natural biopolymer scaffolds with intrinsic microfluidic networks.
    He J; Wang Y; Liu Y; Li D; Jin Z
    Biofabrication; 2013 Jun; 5(2):025002. PubMed ID: 23443621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions.
    Chen MB; Srigunapalan S; Wheeler AR; Simmons CA
    Lab Chip; 2013 Jul; 13(13):2591-8. PubMed ID: 23525275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of immobilizing of low molecular weight hyaluronic acid within gelatin-based hydrogel through enzymatic reaction on behavior of enclosed endothelial cells.
    Khanmohammadi M; Sakai S; Taya M
    Int J Biol Macromol; 2017 Apr; 97():308-316. PubMed ID: 28089929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of photo-crosslinked chitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture.
    Zhao P; Deng C; Xu H; Tang X; He H; Lin C; Su J
    Biomed Mater Eng; 2014; 24(1):633-41. PubMed ID: 24211948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permeable hollow 3D tissue-like constructs engineered by on-chip hydrodynamic-driven assembly of multicellular hierarchical micromodules.
    Cui J; Wang H; Shi Q; Ferraro P; Sun T; Dario P; Huang Q; Fukuda T
    Acta Biomater; 2020 Sep; 113():328-338. PubMed ID: 32534164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications.
    Rizwan M; Peh GSL; Ang HP; Lwin NC; Adnan K; Mehta JS; Tan WS; Yim EKF
    Biomaterials; 2017 Mar; 120():139-154. PubMed ID: 28061402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ generation of tunable porosity gradients in hydrogel-based scaffolds for microfluidic cell culture.
    Al-Abboodi A; Tjeung R; Doran PM; Yeo LY; Friend J; Yik Chan PP
    Adv Healthc Mater; 2014 Oct; 3(10):1655-70. PubMed ID: 24711346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.