These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 26652365)

  • 21. Mechanical characterization of electrospun polyesteretherurethane (PEEU) meshes by atomic force microscopy.
    Tung WT; Wang W; Liu Y; Gould OEC; Kratz K; Ma N; Lendlein A
    Clin Hemorheol Microcirc; 2019; 73(1):229-236. PubMed ID: 31561331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications.
    Gungor-Ozkerim PS; Balkan T; Kose GT; Sarac AS; Kok FN
    J Biomed Mater Res A; 2014 Jun; 102(6):1897-908. PubMed ID: 23852885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel device to quantify the mechanical properties of electrospun nanofibers.
    Fee TJ; Dean DR; Eberhardt AW; Berry JL
    J Biomech Eng; 2012 Oct; 134(10):104503. PubMed ID: 23083203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ocular biocompatibility of dexamethasone acetate loaded poly(ɛ-caprolactone) nanofibers.
    Da Silva GR; Lima TH; Fernandes-Cunha GM; Oréfice RL; Da Silva-Cunha A; Zhao M; Behar-Cohen F
    Eur J Pharm Biopharm; 2019 Sep; 142():20-30. PubMed ID: 31129274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering.
    Chen MC; Sun YC; Chen YH
    Acta Biomater; 2013 Mar; 9(3):5562-72. PubMed ID: 23099301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and Characterization of Electrospun PCL-MgO-Keratin-Based Composite Nanofibers for Biomedical Applications.
    Boakye MAD; Rijal NP; Adhikari U; Bhattarai N
    Materials (Basel); 2015 Jul; 8(7):4080-4095. PubMed ID: 28793426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poly(ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity.
    Wan C; Chen B
    Biomed Mater; 2011 Oct; 6(5):055010. PubMed ID: 21921319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Collagen-PCL sheath-core bicomponent electrospun scaffolds increase osteogenic differentiation and calcium accretion of human adipose-derived stem cells.
    Haslauer CM; Moghe AK; Osborne JA; Gupta BS; Loboa EG
    J Biomater Sci Polym Ed; 2011; 22(13):1695-712. PubMed ID: 20836922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and Surface Compatibility Study of Modified Electrospun Poly(ε-caprolactone) (PCL) Composites for Skin Tissue Engineering.
    Ghosal K; Manakhov A; Zajíčková L; Thomas S
    AAPS PharmSciTech; 2017 Jan; 18(1):72-81. PubMed ID: 26883261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of specimen thickness and alignment on the material and failure properties of electrospun polycaprolactone nanofiber mats.
    Mubyana K; Koppes RA; Lee KL; Cooper JA; Corr DT
    J Biomed Mater Res A; 2016 Nov; 104(11):2794-800. PubMed ID: 27355844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of Keratin-based Nanofiber for Biomedical Engineering.
    Thompson ZS; Rijal NP; Jarvis D; Edwards A; Bhattarai N
    J Vis Exp; 2016 Feb; (108):e53381. PubMed ID: 26889917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elastic poly(ε-caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering.
    Kai D; Prabhakaran MP; Chan BQ; Liow SS; Ramakrishna S; Xu F; Loh XJ
    Biomed Mater; 2016 Feb; 11(1):015007. PubMed ID: 26836757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Mechanical Properties of Blended Fibrinogen:Polycaprolactone (PCL) Nanofibers.
    Alharbi N; Brigham A; Guthold M
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polysaccharide-coated PCL nanofibers for wound dressing applications.
    Croisier F; Atanasova G; Poumay Y; Jérôme C
    Adv Healthc Mater; 2014 Dec; 3(12):2032-9. PubMed ID: 25263074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication and characterization of PVA/Gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes.
    Zarekhalili Z; Bahrami SH; Ranjbar-Mohammadi M; Milan PB
    Int J Biol Macromol; 2017 Jan; 94(Pt A):679-690. PubMed ID: 27777080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new insight into the mechanical properties of nanobiofibers and vibrational behavior of atomic force microscope beam considering them as the samples.
    Jafari A; Sadeghi A
    J Mech Behav Biomed Mater; 2023 Jun; 142():105842. PubMed ID: 37031563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold.
    Lim JS; Ki CS; Kim JW; Lee KG; Kang SW; Kweon HY; Park YH
    Biopolymers; 2012 May; 97(5):265-75. PubMed ID: 22169927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiation of mesenchymal stem cells.
    Chen JP; Chang YS
    Colloids Surf B Biointerfaces; 2011 Aug; 86(1):169-75. PubMed ID: 21514800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning.
    Li D; Chen W; Sun B; Li H; Wu T; Ke Q; Huang C; Ei-Hamshary H; Al-Deyab SS; Mo X
    Colloids Surf B Biointerfaces; 2016 Oct; 146():632-41. PubMed ID: 27429297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.