These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26652367)

  • 1. Composite scaffolds for osteochondral repair obtained by combination of additive manufacturing, leaching processes and hMSC-CM functionalization.
    Díaz Lantada A; Alarcón Iniesta H; García-Ruíz JP
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():218-227. PubMed ID: 26652367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits.
    Du Y; Liu H; Yang Q; Wang S; Wang J; Ma J; Noh I; Mikos AG; Zhang S
    Biomaterials; 2017 Aug; 137():37-48. PubMed ID: 28528301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new bi-layered scaffold for osteochondral tissue regeneration: In vitro and in vivo preclinical investigations.
    Sartori M; Pagani S; Ferrari A; Costa V; Carina V; Figallo E; Maltarello MC; Martini L; Fini M; Giavaresi G
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):101-111. PubMed ID: 27770869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration.
    Di Luca A; Longoni A; Criscenti G; Lorenzo-Moldero I; Klein-Gunnewiek M; Vancso J; van Blitterswijk C; Mota C; Moroni L
    Biofabrication; 2016 Feb; 8(1):015014. PubMed ID: 26924824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influencing chondrogenic differentiation of human mesenchymal stromal cells in scaffolds displaying a structural gradient in pore size.
    Di Luca A; Szlazak K; Lorenzo-Moldero I; Ghebes CA; Lepedda A; Swieszkowski W; Van Blitterswijk C; Moroni L
    Acta Biomater; 2016 May; 36():210-9. PubMed ID: 26969523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-laden biphasic scaffolds with anisotropic structure for the regeneration of osteochondral tissue.
    Schütz K; Despang F; Lode A; Gelinsky M
    J Tissue Eng Regen Med; 2016 May; 10(5):404-17. PubMed ID: 24644134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration.
    Di Luca A; Lorenzo-Moldero I; Mota C; Lepedda A; Auhl D; Van Blitterswijk C; Moroni L
    Adv Healthc Mater; 2016 Jul; 5(14):1753-63. PubMed ID: 27109461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteochondral regeneration using an oriented nanofiber yarn-collagen type I/hyaluronate hybrid/TCP biphasic scaffold.
    Liu S; Wu J; Liu X; Chen D; Bowlin GL; Cao L; Lu J; Li F; Mo X; Fan C
    J Biomed Mater Res A; 2015 Feb; 103(2):581-92. PubMed ID: 24771686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and characterization of a tissue-engineered bilayer scaffold for osteochondral tissue repair.
    Giannoni P; Lazzarini E; Ceseracciu L; Barone AC; Quarto R; Scaglione S
    J Tissue Eng Regen Med; 2015 Oct; 9(10):1182-92. PubMed ID: 23172816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells.
    Ding X; Zhu M; Xu B; Zhang J; Zhao Y; Ji S; Wang L; Wang L; Li X; Kong D; Ma X; Yang Q
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16696-705. PubMed ID: 25210952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Layered Scaffolds for Osteochondral Tissue Engineering: In Vitro Response of Co-Cultured Human Mesenchymal Stem Cells.
    Amadori S; Torricelli P; Panzavolta S; Parrilli A; Fini M; Bigi A
    Macromol Biosci; 2015 Nov; 15(11):1535-45. PubMed ID: 26126665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds.
    Chen J; Chen H; Li P; Diao H; Zhu S; Dong L; Wang R; Guo T; Zhao J; Zhang J
    Biomaterials; 2011 Jul; 32(21):4793-805. PubMed ID: 21489619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model.
    Yang Q; Peng J; Lu SB; Guo QY; Zhao B; Zhang L; Wang AY; Xu WJ; Xia Q; Ma XL; Hu YC; Xu BS
    Chin Med J (Engl); 2011 Dec; 124(23):3930-8. PubMed ID: 22340321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.
    Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL
    J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z
    J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific inductive potential of a novel nanocomposite biomimetic biomaterial for osteochondral tissue regeneration.
    Manferdini C; Cavallo C; Grigolo B; Fiorini M; Nicoletti A; Gabusi E; Zini N; Pressato D; Facchini A; Lisignoli G
    J Tissue Eng Regen Med; 2016 May; 10(5):374-91. PubMed ID: 23495253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds.
    Ambre AH; Katti DR; Katti KS
    J Biomed Mater Res A; 2013 Sep; 101(9):2644-60. PubMed ID: 23413041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing.
    Zhang W; Lian Q; Li D; Wang K; Hao D; Bian W; Jin Z
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():10-5. PubMed ID: 25491954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printed Structures Filled with Carbon Fibers and Functionalized with Mesenchymal Stem Cell Conditioned Media as In Vitro Cell Niches for Promoting Chondrogenesis.
    García-Ruíz JP; Díaz Lantada A
    Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29295547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.