These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Biodegradable polyester-based microcarriers with modified surface tailored for tissue engineering. Privalova A; Markvicheva E; Sevrin Ch; Drozdova M; Kottgen C; Gilbert B; Ortiz M; Grandfils Ch J Biomed Mater Res A; 2015 Mar; 103(3):939-48. PubMed ID: 24832052 [TBL] [Abstract][Full Text] [Related]
4. Preparation of poly(L-lactide)-based microspheres having a cationic or anionic surface using biodegradable surfactants. Ouchi T; Toyohara M; Arimura H; Ohya Y Biomacromolecules; 2002; 3(5):885-8. PubMed ID: 12217030 [TBL] [Abstract][Full Text] [Related]
5. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers. Díaz A; Del Valle L; Franco L; Sarasua JR; Estrany F; Puiggalí J Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():517-28. PubMed ID: 25063149 [TBL] [Abstract][Full Text] [Related]
6. Chitosan modified poly(L-lactide) microspheres as cell microcarriers for cartilage tissue engineering. Lao L; Tan H; Wang Y; Gao C Colloids Surf B Biointerfaces; 2008 Oct; 66(2):218-25. PubMed ID: 18691852 [TBL] [Abstract][Full Text] [Related]
7. Application of the lithium and magnesium initiators for the synthesis of glycolide, lactide, and epsilon-caprolactone copolymers biocompatible with brain tissue. Dobrzyński P; Kasperczyk J; Jelonek K; Ryba M; Walski M; Bero M J Biomed Mater Res A; 2006 Dec; 79(4):865-73. PubMed ID: 16886217 [TBL] [Abstract][Full Text] [Related]
8. Preparation and in vitro release behaviour of 5-fluorouracil-loaded microspheres based on poly (L-lactide) and its carbonate copolymers. Zhu KJ; Zhang JX; Wang C; Yasuda H; Ichimaru A; Yamamoto K J Microencapsul; 2003; 20(6):731-43. PubMed ID: 14594662 [TBL] [Abstract][Full Text] [Related]
9. Structure, morphology and cell affinity of poly(L-lactide) films surface-functionalized with chitosan nanofibers via a solid-liquid phase separation technique. Zhao J; Han W; Tang M; Tu M; Zeng R; Liang Z; Zhou C Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1546-53. PubMed ID: 23827607 [TBL] [Abstract][Full Text] [Related]
10. Polyethylenglycol-co-poly-D,L-lactide copolymer based microspheres: preparation, characterization and delivery of a model protein. Dorati R; Genta I; Tomasi C; Modena T; Colonna C; Pavanetto F; Perugini P; Conti B J Microencapsul; 2008 Aug; 25(5):330-8. PubMed ID: 18465305 [TBL] [Abstract][Full Text] [Related]
11. Phase inversion in polylactide/soybean oil blends compatibilized by poly(isoprene-b-lactide) block copolymers. Chang K; Robertson ML; Hillmyer MA ACS Appl Mater Interfaces; 2009 Oct; 1(10):2390-9. PubMed ID: 20355877 [TBL] [Abstract][Full Text] [Related]
12. Homogeneous chitosan/poly(L-lactide) composite scaffolds prepared by emulsion freeze-drying. Niu X; Li X; Liu H; Zhou G; Feng Q; Cui F; Fan Y J Biomater Sci Polym Ed; 2012; 23(1-4):391-404. PubMed ID: 21255484 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of uniform poly(d,l-lactide) and poly(d,l-lactide-co-glycolide) microspheres using a microfluidic chip for comparison. Yang CH; Huang KS; Grumezescu AM; Wang CY; Tzeng SC; Chen SY; Lin YH; Lin YS Electrophoresis; 2014 Feb; 35(2-3):316-22. PubMed ID: 23857679 [TBL] [Abstract][Full Text] [Related]
14. Morphology control of polylactide microspheres enclosing irinotecan hydrochloride with polylactide based polymer surfactant for reduction of initial burst. Nishino S; Kishida A; Yoshizawa H Int J Pharm; 2007 Feb; 330(1-2):32-6. PubMed ID: 17000066 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and in vitro drug release study of microsphere drug delivery systems based on amphiphilic poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(L-lactide) graft copolymers. Zhou YX; Li SL; Fu HL; Cheng SX; Zhang XZ; Zhuo RX Colloids Surf B Biointerfaces; 2008 Feb; 61(2):164-9. PubMed ID: 17851053 [TBL] [Abstract][Full Text] [Related]
16. Thermoplastic elastomers based on poly(lactide)-poly(trimethylene carbonate-co-caprolactone)-poly(lactide) triblock copolymers and their stereocomplexes. Zhang Z; Grijpma DW; Feijen J J Control Release; 2006 Nov; 116(2):e29-31. PubMed ID: 17718953 [No Abstract] [Full Text] [Related]
17. Surface property and in vitro biodegradation of microspheres fabricated by poly(epsilon-caprolactone-b-ethylene oxide) diblock copolymers. Yu G; Zhang Y; Shi X; Li Z; Gan Z J Biomed Mater Res A; 2008 Mar; 84(4):926-39. PubMed ID: 17647229 [TBL] [Abstract][Full Text] [Related]
18. The mechanism of PLA microparticle formation by water-in-oil-in-water solvent evaporation method. Chen JL; Chiang CH; Yeh MK J Microencapsul; 2002; 19(3):333-46. PubMed ID: 12022499 [TBL] [Abstract][Full Text] [Related]
19. Amphiphilic poly(D- or L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) block copolymers: controlled synthesis, characterization, and stereocomplex formation. Spasova M; Mespouille L; Coulembier O; Paneva D; Manolova N; Rashkov I; Dubois P Biomacromolecules; 2009 May; 10(5):1217-23. PubMed ID: 19331403 [TBL] [Abstract][Full Text] [Related]
20. Emulsifying properties of biodegradable polylactide-grafted dextran copolymers. Raynaud J; Choquenet B; Marie E; Dellacherie E; Nouvel C; Six JL; Durand A Biomacromolecules; 2008 Mar; 9(3):1014-21. PubMed ID: 18271550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]