These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 26652405)

  • 1. Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering.
    Sharifi E; Azami M; Kajbafzadeh AM; Moztarzadeh F; Faridi-Majidi R; Shamousi A; Karimi R; Ai J
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():533-541. PubMed ID: 26652405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics.
    Yun HS; Kim SH; Khang D; Choi J; Kim HH; Kang M
    Int J Nanomedicine; 2011; 6():2521-31. PubMed ID: 22072886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro evaluation of human endometrial stem cell-derived osteoblast-like cells' behavior on gelatin/collagen/bioglass nanofibers' scaffolds.
    Sharifi E; Ebrahimi-Barough S; Panahi M; Azami M; Ai A; Barabadi Z; Kajbafzadeh AM; Ai J
    J Biomed Mater Res A; 2016 Sep; 104(9):2210-9. PubMed ID: 27087544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review.
    Kuttappan S; Mathew D; Nair MB
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1390-1401. PubMed ID: 27316767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering.
    Chen P; Liu L; Pan J; Mei J; Li C; Zheng Y
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():325-335. PubMed ID: 30678918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering.
    Nga NK; Hoai TT; Viet PH
    Colloids Surf B Biointerfaces; 2015 Apr; 128():506-514. PubMed ID: 25791418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic interconnected porous keratin-fibrin-gelatin 3D sponge for tissue engineering application.
    Singaravelu S; Ramanathan G; Raja MD; Nagiah N; Padmapriya P; Kaveri K; Sivagnanam UT
    Int J Biol Macromol; 2016 May; 86():810-9. PubMed ID: 26875534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.
    Pon-On W; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Krishnamra N; Tang IM
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():63-72. PubMed ID: 24656353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchically biomimetic scaffold of a collagen-mesoporous bioactive glass nanofiber composite for bone tissue engineering.
    Hsu FY; Lu MR; Weng RC; Lin HM
    Biomed Mater; 2015 Mar; 10(2):025007. PubMed ID: 25805665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering.
    Thomas A; Bera J
    J Biomater Sci Polym Ed; 2019 May; 30(7):561-579. PubMed ID: 30801229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds.
    Blaker JJ; Gough JE; Maquet V; Notingher I; Boccaccini AR
    J Biomed Mater Res A; 2003 Dec; 67(4):1401-11. PubMed ID: 14624528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass®-based scaffolds.
    Detsch R; Alles S; Hum J; Westenberger P; Sieker F; Heusinger D; Kasper C; Boccaccini AR
    J Biomed Mater Res A; 2015 Mar; 103(3):1029-37. PubMed ID: 24853477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The preparation of bioglass/collagen/phosphoserine biomemetic composite scaffold and a study on its cytocompatibility].
    Chen X; Li X; Wang Y; Yang C; Zhao N
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1112-5. PubMed ID: 19024457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biologically active and biomimetic dual gelatin scaffolds for tissue engineering.
    Sánchez P; Pedraz JL; Orive G
    Int J Biol Macromol; 2017 May; 98():486-494. PubMed ID: 28185928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering.
    Jamalpoor Z; Mirzadeh H; Joghataei MT; Zeini D; Bagheri-Khoulenjani S; Nourani MR
    J Biomed Mater Res A; 2015 May; 103(5):1882-92. PubMed ID: 25195588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering.
    Yazdimamaghani M; Vashaee D; Assefa S; Walker KJ; Madihally SV; Köhler GA; Tayebi L
    J Biomed Nanotechnol; 2014 Jun; 10(6):911-31. PubMed ID: 24749388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering.
    Liu X; Smith LA; Hu J; Ma PX
    Biomaterials; 2009 Apr; 30(12):2252-8. PubMed ID: 19152974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences.
    Vozzi G; Corallo C; Carta S; Fortina M; Gattazzo F; Galletti M; Giordano N
    J Biomed Mater Res A; 2014 May; 102(5):1415-21. PubMed ID: 23775901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.