These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
441 related articles for article (PubMed ID: 26652459)
1. Preparation, characterization and in vitro dissolution behavior of porous biphasic α/β-tricalcium phosphate bioceramics. Xie L; Yu H; Deng Y; Yang W; Liao L; Long Q Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1007-1015. PubMed ID: 26652459 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260 [TBL] [Abstract][Full Text] [Related]
3. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics]. Ji J; Ran J; Gou L; Wang F; Sun L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425 [TBL] [Abstract][Full Text] [Related]
4. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. Zhang Y; Zhang M J Biomed Mater Res; 2002 Jul; 61(1):1-8. PubMed ID: 12001239 [TBL] [Abstract][Full Text] [Related]
6. The effect of calcium silicate on in vitro physiochemical properties and in vivo osteogenesis, degradability and bioactivity of porous β-tricalcium phosphate bioceramics. Liu S; Jin F; Lin K; Lu J; Sun J; Chang J; Dai K; Fan C Biomed Mater; 2013 Apr; 8(2):025008. PubMed ID: 23428666 [TBL] [Abstract][Full Text] [Related]
7. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies. Xu M; Zhai D; Chang J; Wu C Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000 [TBL] [Abstract][Full Text] [Related]
8. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. Ni S; Chang J J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892 [TBL] [Abstract][Full Text] [Related]
9. Enhanced effect of β-tricalcium phosphate phase on neovascularization of porous calcium phosphate ceramics: in vitro and in vivo evidence. Chen Y; Wang J; Zhu XD; Tang ZR; Yang X; Tan YF; Fan YJ; Zhang XD Acta Biomater; 2015 Jan; 11():435-48. PubMed ID: 25246313 [TBL] [Abstract][Full Text] [Related]
10. Development of a bioactive porous collagen/β-tricalcium phosphate bone graft assisting rapid vascularization for bone tissue engineering applications. Baheiraei N; Nourani MR; Mortazavi SMJ; Movahedin M; Eyni H; Bagheri F; Norahan MH J Biomed Mater Res A; 2018 Jan; 106(1):73-85. PubMed ID: 28879686 [TBL] [Abstract][Full Text] [Related]
11. Nanoindentation on porous bioceramic scaffolds for bone tissue engineering. Chowdhury S; Thomas V; Dean D; Catledge SA; Vohra YK J Nanosci Nanotechnol; 2005 Nov; 5(11):1816-20. PubMed ID: 16433415 [TBL] [Abstract][Full Text] [Related]
12. Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics. França R; Samani TD; Bayade G; Yahia L; Sacher E J Colloid Interface Sci; 2014 Apr; 420():182-8. PubMed ID: 24559717 [TBL] [Abstract][Full Text] [Related]
13. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Xin R; Leng Y; Chen J; Zhang Q Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923 [TBL] [Abstract][Full Text] [Related]
14. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model. Lin K; Liu Y; Huang H; Chen L; Wang Z; Chang J J Mater Sci Mater Med; 2015 Jun; 26(6):197. PubMed ID: 26099345 [TBL] [Abstract][Full Text] [Related]
15. Injectable biphasic calcium phosphate cements as a potential bone substitute. Sariibrahimoglu K; Wolke JG; Leeuwenburgh SC; Yubao L; Jansen JA J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):415-22. PubMed ID: 24106108 [TBL] [Abstract][Full Text] [Related]
16. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Kamitakahara M; Ohtsuki C; Miyazaki T J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965 [TBL] [Abstract][Full Text] [Related]
17. Tricalcium phosphate-Fluorapatite as bone tissue engineering: Evaluation of bioactivity and biocompatibility. Taktak R; Elghazel A; Bouaziz J; Charfi S; Keskes H Mater Sci Eng C Mater Biol Appl; 2018 May; 86():121-128. PubMed ID: 29525087 [TBL] [Abstract][Full Text] [Related]
18. Novel Extrusion-Microdrilling Approach to Fabricate Calcium Phosphate-Based Bioceramic Scaffolds Enabling Fast Bone Regeneration. He F; Lu T; Fang X; Feng S; Feng S; Tian Y; Li Y; Zuo F; Deng X; Ye J ACS Appl Mater Interfaces; 2020 Jul; 12(29):32340-32351. PubMed ID: 32597161 [TBL] [Abstract][Full Text] [Related]
19. Tissue-engineered bone formation in vivo for artificial laminae of the vertebral arch using β-tricalcium phosphate bioceramics seeded with mesenchymal stem cells. Dong Y; Chen X; Hong Y Spine (Phila Pa 1976); 2013 Oct; 38(21):E1300-6. PubMed ID: 23873227 [TBL] [Abstract][Full Text] [Related]
20. Uniform tricalcium phosphate beads with an open porous structure for tissue engineering. Ryu TK; Oh MJ; Moon SK; Paik DH; Kim SE; Park JH; Choi SW Colloids Surf B Biointerfaces; 2013 Dec; 112():368-73. PubMed ID: 24021546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]