BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26652601)

  • 1. Cell adhesion manipulation through single cell assembly for characterization of initial cell-to-cell interaction.
    Gou X; Wang R; Lam SS; Hou J; Leung AY; Sun D
    Biomed Eng Online; 2015 Dec; 14():114. PubMed ID: 26652601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leukocyte-endothelium interaction: measurement by laser tweezers force spectroscopy.
    Wang SK; Chiu JJ; Lee MR; Chou SC; Chen LJ; Hwang NH
    Cardiovasc Eng; 2006 Sep; 6(3):111-7. PubMed ID: 16960761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration.
    Andersson M; Madgavkar A; Stjerndahl M; Wu Y; Tan W; Duran R; Niehren S; Mustafa K; Arvidson K; Wennerberg A
    Rev Sci Instrum; 2007 Jul; 78(7):074302. PubMed ID: 17672780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light forces the pace: optical manipulation for biophotonics.
    Stevenson DJ; Gunn-Moore F; Dholakia K
    J Biomed Opt; 2010; 15(4):041503. PubMed ID: 20799781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying combined optical tweezers and fluorescence microscopy technologies to manipulate cell adhesions for cell-to-cell interaction study.
    Gou X; Han HC; Hu S; Leung AY; Sun D
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2308-15. PubMed ID: 23549881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip.
    Boer G; Johann R; Rohner J; Merenda F; Delacrétaz G; Renaud P; Salathé RP
    Rev Sci Instrum; 2007 Nov; 78(11):116101. PubMed ID: 18052509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical levitation and manipulation of stuck particles with pulsed optical tweezers.
    Ambardekar AA; Li YQ
    Opt Lett; 2005 Jul; 30(14):1797-9. PubMed ID: 16092349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-force magnetic tweezers with force feedback for biological applications.
    Kollmannsberger P; Fabry B
    Rev Sci Instrum; 2007 Nov; 78(11):114301. PubMed ID: 18052492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-trap Raman tweezers for probing dynamics and heterogeneity of interacting microbial cells.
    Li Y; Wang G; Yao HL; Liu J; Li YQ
    J Biomed Opt; 2010; 15(6):067008. PubMed ID: 21198212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells.
    Jeorrett AH; Neale SL; Massoubre D; Gu E; Henderson RK; Millington O; Mathieson K; Dawson MD
    Opt Express; 2014 Jan; 22(2):1372-80. PubMed ID: 24515144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic adherent cell injection for characterizing cell-cell communication.
    Liu J; Siragam V; Gong Z; Chen J; Fridman MD; Leung C; Lu Z; Ru C; Xie S; Luo J; Hamilton RM; Sun Y
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):119-25. PubMed ID: 25073160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tilt control in optical tweezers.
    Ichikawa M; Kubo K; Yoshikawa K; Kimura Y
    J Biomed Opt; 2008; 13(1):010503. PubMed ID: 18315348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulation of mammalian cells using a single-fiber optical microbeam.
    Mohanty SK; Mohanty KS; Berns MW
    J Biomed Opt; 2008; 13(5):054049. PubMed ID: 19021429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ sensing and manipulation of molecules in biological samples using a nanorobotic system.
    Li G; Xi N; Wang DH
    Nanomedicine; 2005 Mar; 1(1):31-40. PubMed ID: 17292055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulating cell adhesions with optical tweezers for study of cell-to-cell interactions.
    Hu S; Gou X; Han H; Leung AY; Sun D
    J Biomed Nanotechnol; 2013 Feb; 9(2):281-5. PubMed ID: 23627055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In plane manipulation of a dielectric nanobeam with gradient optical forces.
    Favuzzi PA; Bardoux R; Asano T; Kawakami Y; Noda S
    Opt Express; 2013 Dec; 21(24):29129-39. PubMed ID: 24514464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells.
    Harsono MS; Zhu Q; Shi LZ; Duquette M; Berns MW
    J Biophotonics; 2013 Feb; 6(2):197-204. PubMed ID: 22517735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential orientation of 10T1/2 mesenchymal cells on non-uniform stretch environments.
    Richardson WJ; van der Voort DD; Wilson E; Moore JE
    Mol Cell Biomech; 2013 Sep; 10(3):245-65. PubMed ID: 24396979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical trapping and manipulation of live T cells with a low numerical aperture lens.
    Harris J; McConnell G
    Opt Express; 2008 Sep; 16(18):14036-43. PubMed ID: 18773014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell stiffening in response to external stress is correlated to actin recruitment.
    Icard-Arcizet D; Cardoso O; Richert A; Hénon S
    Biophys J; 2008 Apr; 94(7):2906-13. PubMed ID: 18178644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.