These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26652690)

  • 1. Photodependent Melting of Unmodified DNA Using a Photosensitive Intercalator: A New and Generic Tool for Photoreversible Assembly of DNA Nanostructures at Constant Temperature.
    Bergen A; Rudiuk S; Morel M; Le Saux T; Ihmels H; Baigl D
    Nano Lett; 2016 Jan; 16(1):773-80. PubMed ID: 26652690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule visualization of the hybridization and dissociation of photoresponsive oligonucleotides and their reversible switching behavior in a DNA nanostructure.
    Endo M; Yang Y; Suzuki Y; Hidaka K; Sugiyama H
    Angew Chem Int Ed Engl; 2012 Oct; 51(42):10518-22. PubMed ID: 22965475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of intercalator substituent and nucleotide sequence on the stability of DNA- and RNA-naphthalimide complexes.
    Johnson CA; Hudson GA; Hardebeck LK; Jolley EA; Ren Y; Lewis M; Znosko BM
    Bioorg Med Chem; 2015 Jul; 23(13):3586-91. PubMed ID: 25960324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A supra-photoswitch involving sandwiched DNA base pairs and azobenzenes for light-driven nanostructures and nanodevices.
    Liang X; Mochizuki T; Asanuma H
    Small; 2009 Aug; 5(15):1761-8. PubMed ID: 19572326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-driven DNA nanomachine with a photoresponsive molecular engine.
    Kamiya Y; Asanuma H
    Acc Chem Res; 2014 Jun; 47(6):1663-72. PubMed ID: 24617966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncovering the self-assembly of DNA nanostructures by thermodynamics and kinetics.
    Wei X; Nangreave J; Liu Y
    Acc Chem Res; 2014 Jun; 47(6):1861-70. PubMed ID: 24851996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocontrol of DNA duplex formation by using azobenzene-bearing oligonucleotides.
    Asanuma H; Liang X; Yoshida T; Komiyama M
    Chembiochem; 2001 Jan; 2(1):39-44. PubMed ID: 11828425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA Three-Way Junctions Stabilized by Hydrophobic Interactions for Creation of Functional Nanostructures.
    Laing BM; Juliano RL
    Chembiochem; 2015 Jun; 16(9):1284-7. PubMed ID: 25953428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoregulation of DNA triplex formation by azobenzene.
    Liang X; Asanuma H; Komiyama M
    J Am Chem Soc; 2002 Mar; 124(9):1877-83. PubMed ID: 11866598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding the Toolbox of Photoswitches for DNA Nanotechnology Using Arylazopyrazoles.
    Adam V; Prusty DK; Centola M; Škugor M; Hannam JS; Valero J; Klöckner B; Famulok M
    Chemistry; 2018 Jan; 24(5):1062-1066. PubMed ID: 29168907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Photoactuation of a DNA Nanostructure using an Internal Photocaged Trigger Strand.
    Liu M; Jiang S; Loza O; Fahmi NE; Šulc P; Stephanopoulos N
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9341-9345. PubMed ID: 29790232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular recombination R-triplex in solution: stabilization by bis-intercalator YOYO.
    Kaluzhny DN; Timoshin VV; Borisova OF; Zhurkin VB; Florentiev VL; Shchyolkina AK
    J Biomol Struct Dyn; 2008 Dec; 26(3):301-6. PubMed ID: 18808196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced switch of a DNA/RNA inactive molecule into a classical intercalator.
    Starcević K; Karminski-Zamola G; Piantanida I; Zinić M; Suman L; Kralj M
    J Am Chem Soc; 2005 Feb; 127(4):1074-5. PubMed ID: 15669826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoswitchable Fluorescent Crystals Obtained by the Photoreversible Coassembly of a Nucleobase and an Azobenzene Intercalator.
    Zhou L; Retailleau P; Morel M; Rudiuk S; Baigl D
    J Am Chem Soc; 2019 Jun; 141(23):9321-9329. PubMed ID: 31117648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Line up base pairs and intercalators one by one in a stable duplex.
    Liang X; Mochizuki T; Nishioka H; Asanuma H
    Nucleic Acids Symp Ser (Oxf); 2009; (53):189-90. PubMed ID: 19749324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic tuning of DNA-nanoparticle superlattices by molecular intercalation of double helix.
    Pal S; Zhang Y; Kumar SK; Gang O
    J Am Chem Soc; 2015 Apr; 137(12):4030-3. PubMed ID: 25751093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the analytical sensitivity by oligonucleotides modified with para- and ortho-twisted intercalating nucleic acids--TINA.
    Schneider UV; Géci I; Jøhnk N; Mikkelsen ND; Pedersen EB; Lisby G
    PLoS One; 2011; 6(6):e20565. PubMed ID: 21673988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-regulation of DNA/RNA duplex formation by azobenzene-tethered DNA towards antisense strategy.
    Liang X; Yoshida T; Asanuma H; Komiyama M
    Nucleic Acids Symp Ser; 2000; (44):277-8. PubMed ID: 12903376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential DNA recognition by the enantiomers of 1-Rh(MGP)2 phi: a combination of shape selection and direct readout.
    Franklin SJ; Barton JK
    Biochemistry; 1998 Nov; 37(46):16093-105. PubMed ID: 9819202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular design for reversing the photoswitching mode of turning ON and OFF DNA hybridization.
    Liang X; Takenaka N; Nishioka H; Asanuma H
    Chem Asian J; 2008 Mar; 3(3):553-560. PubMed ID: 18283697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.