BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 26653025)

  • 1. Understanding Brassicaceae evolution through ancestral genome reconstruction.
    Murat F; Louis A; Maumus F; Armero A; Cooke R; Quesneville H; Roest Crollius H; Salse J
    Genome Biol; 2015 Dec; 16():262. PubMed ID: 26653025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes.
    Schranz ME; Lysak MA; Mitchell-Olds T
    Trends Plant Sci; 2006 Nov; 11(11):535-42. PubMed ID: 17029932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Karyotype and gene order evolution from reconstructed extinct ancestors highlight contrasts in genome plasticity of modern rosid crops.
    Murat F; Zhang R; Guizard S; Gavranović H; Flores R; Steinbach D; Quesneville H; Tannier E; Salse J
    Genome Biol Evol; 2015 Jan; 7(3):735-49. PubMed ID: 25637221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa.
    Cheng F; Mandáková T; Wu J; Xie Q; Lysak MA; Wang X
    Plant Cell; 2013 May; 25(5):1541-54. PubMed ID: 23653472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae).
    Mandáková T; Lysak MA
    Plant Cell; 2008 Oct; 20(10):2559-70. PubMed ID: 18836039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the evolutionary interplay between subgenomes following polyploidy: A paleogenomics approach in grasses.
    Salse J
    Am J Bot; 2016 Jul; 103(7):1167-74. PubMed ID: 27425631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsynteny and phylogenetic analysis of tandemly organised miRNA families across five members of Brassicaceae reveals complex retention and loss history.
    Rathore P; Geeta R; Das S
    Plant Sci; 2016 Jun; 247():35-48. PubMed ID: 27095398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of genome size in Brassicaceae.
    Johnston JS; Pepper AE; Hall AE; Chen ZJ; Hodnett G; Drabek J; Lopez R; Price HJ
    Ann Bot; 2005 Jan; 95(1):229-35. PubMed ID: 15596470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An updated explanation of ancestral karyotype changes and reconstruction of evolutionary trajectories to form Camelina sativa chromosomes.
    Zhang Z; Meng F; Sun P; Yuan J; Gong K; Liu C; Wang W; Wang X
    BMC Genomics; 2020 Oct; 21(1):705. PubMed ID: 33045990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species.
    Lysak MA; Berr A; Pecinka A; Schmidt R; McBreen K; Schubert I
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):5224-9. PubMed ID: 16549785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources.
    Wang X; Wu J; Liang J; Cheng F; Wang X
    Database (Oxford); 2015; 2015():. PubMed ID: 26589635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomics in the Brassicaceae: a family-wide perspective.
    Schranz ME; Song BH; Windsor AJ; Mitchell-Olds T
    Curr Opin Plant Biol; 2007 Apr; 10(2):168-75. PubMed ID: 17300984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in Brassicaceae.
    Zhang YM; Shao ZQ; Wang Q; Hang YY; Xue JY; Wang B; Chen JQ
    J Integr Plant Biol; 2016 Feb; 58(2):165-77. PubMed ID: 25926337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chromosome-level genome sequence and karyotypic evolution of Megadenia pygmaea (Brassicaceae).
    Yang W; Zhang L; Mandáková T; Huang L; Li T; Jiang J; Yang Y; Lysak MA; Liu J; Hu Q
    Mol Ecol Resour; 2021 Apr; 21(3):871-879. PubMed ID: 33151630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the thale: comparative genomics and genetics of Arabidopsis relatives.
    Koenig D; Weigel D
    Nat Rev Genet; 2015 May; 16(5):285-98. PubMed ID: 25854181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History.
    Hohmann N; Wolf EM; Lysak MA; Koch MA
    Plant Cell; 2015 Oct; 27(10):2770-84. PubMed ID: 26410304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana.
    Yogeeswaran K; Frary A; York TL; Amenta A; Lesser AH; Nasrallah JB; Tanksley SD; Nasrallah ME
    Genome Res; 2005 Apr; 15(4):505-15. PubMed ID: 15805492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of ancestral karyotype illuminates chromosome evolution in the genus Cucumis.
    Zhao Q; Meng Y; Wang P; Qin X; Cheng C; Zhou J; Yu X; Li J; Lou Q; Jahn M; Chen J
    Plant J; 2021 Aug; 107(4):1243-1259. PubMed ID: 34160852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes.
    Mandáková T; Schranz ME; Sharbel TF; de Jong H; Lysak MA
    Plant J; 2015 Jun; 82(5):785-93. PubMed ID: 25864414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative paleogenomics of crucifers: ancestral genomic blocks revisited.
    Lysak MA; Mandáková T; Schranz ME
    Curr Opin Plant Biol; 2016 Apr; 30():108-15. PubMed ID: 26945766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.