BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 2665373)

  • 1. Identity of soluble thiamine-binding protein with thiamine repressible acid phosphatase in Saccharomyces cerevisiae.
    Nosaka K; Nishimura H; Iwashima A
    Yeast; 1989 Apr; 5 Spec No():S447-51. PubMed ID: 2665373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identity of soluble thiamin-binding protein with thiamin-repressible acid phosphatase in Saccharomyces cerevisiae.
    Nosaka K; Nishimura H; Iwashima A
    Biochim Biophys Acta; 1988 Oct; 967(1):49-55. PubMed ID: 3048416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High affinity of acid phosphatase encoded by PHO3 gene in Saccharomyces cerevisiae for thiamin phosphates.
    Nosaka K
    Biochim Biophys Acta; 1990 Feb; 1037(2):147-54. PubMed ID: 2407294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and genetic evidence that yeast extracellular protein phosphatase activity is due to acid phosphatase.
    Lopandic K; Deana AD; Barbaric S; Pinna LA
    Biochem Int; 1987 Apr; 14(4):627-33. PubMed ID: 2839178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast.
    Nosaka K; Kaneko Y; Nishimura H; Iwashima A
    FEMS Microbiol Lett; 1989 Jul; 51(1):55-9. PubMed ID: 2676709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification, carbohydrate composition and kinetic properties of the constitutive yeast acid phosphatase.
    Mrsa V; Barbarić S; Ries B; Mildner P
    Biochem Int; 1985 Apr; 10(4):567-75. PubMed ID: 3896242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of thiamine biosynthesis in Saccharomyces cerevisiae.
    Kawasaki Y; Nosaka K; Kaneko Y; Nishimura H; Iwashima A
    J Bacteriol; 1990 Oct; 172(10):6145-7. PubMed ID: 2170344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation thi81 causing a deficiency in the signal transduction of thiamine pyrophosphate in Saccharomyces cerevisiae.
    Nishimura H; Kawasaki Y; Nosaka K; Kaneko Y
    FEMS Microbiol Lett; 1997 Nov; 156(2):245-9. PubMed ID: 9513273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Analysis of the quaternary structure of secreted repressible acid phosphatase from the yeast Saccharomyces cerevisiae].
    Shnyreva MG; Tsuprun VL; Stel'mashchuk VIa; Egorov SN
    Biokhimiia; 1992 Jul; 57(7):1100-8. PubMed ID: 1391215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae.
    Bun-ya M; Shikata K; Nakade S; Yompakdee C; Harashima S; Oshima Y
    Curr Genet; 1996 Mar; 29(4):344-51. PubMed ID: 8598055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A constitutive thiamine metabolism mutation, thi80, causing reduced thiamine pyrophosphokinase activity in Saccharomyces cerevisiae.
    Nishimura H; Kawasaki Y; Nosaka K; Kaneko Y; Iwashima A
    J Bacteriol; 1991 Apr; 173(8):2716-9. PubMed ID: 1849514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of thiamin repressible acid phosphatase in yeast.
    Schweingruber ME; Fluri R; Maundrell K; Schweingruber AM; Dumermuth E
    J Biol Chem; 1986 Dec; 261(34):15877-82. PubMed ID: 3536917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible functional roles of carboxyl and histidine residues in a soluble thiamine-binding protein of Saccharomyces cerevisiae.
    Nishimura H; Sempuku K; Iwashima A
    Biochim Biophys Acta; 1981 May; 668(3):333-8. PubMed ID: 7016195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiamine transport in Saccharomyces cerevisiae protoplasts.
    Nishimura H; Sempuku K; Iwashima A
    J Bacteriol; 1982 May; 150(2):960-2. PubMed ID: 7040346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the Saccharomyces cerevisiae cdc42-1ts allele and new temperature-conditional-lethal cdc42 alleles.
    Miller PJ; Johnson DI
    Yeast; 1997 May; 13(6):561-72. PubMed ID: 9178507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on thiamine diphosphate kinase (EC 2.7.4.15) from brewer's yeast: purification and some properties.
    Voskoboyev AI; Chernikevich IP; Luchko VS
    Biomed Biochim Acta; 1987; 46(1):3-13. PubMed ID: 3034239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of tunicamycin on thiamine transport in Saccharomyces cerevisiae.
    Nosaka K; Nishimura H; Iwashima A
    Biochim Biophys Acta; 1986 Jun; 858(2):309-11. PubMed ID: 3521742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformations of membrane-bound organelles in sec 14 mutants of the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica.
    Rambourg A; Clermont Y; Nicaud JM; Gaillardin C; Kepes F
    Anat Rec; 1996 Jul; 245(3):447-58. PubMed ID: 8800403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ddi1p and Rad23p play a cooperative role as negative regulators in the PHO pathway in Saccharomyces cerevisiae.
    Auesukaree C; Fuchigami I; Homma T; Kaneko Y; Harashima S
    Biochem Biophys Res Commun; 2008 Jan; 365(4):821-5. PubMed ID: 18035052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical properties and excretion behavior of repressible acid phosphatases with altered subunit composition.
    Shnyreva MG; Petrova EV; Egorov SN; Hinnen A
    Microbiol Res; 1996 Aug; 151(3):291-300. PubMed ID: 8817921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.