These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Local CC2 electronic excitation energies for large molecules with density fitting. Kats D; Korona T; Schütz M J Chem Phys; 2006 Sep; 125(10):104106. PubMed ID: 16999514 [TBL] [Abstract][Full Text] [Related]
6. Combining frozen-density embedding with the conductor-like screening model using Lagrangian techniques for response properties. Schieschke N; Di Remigio R; Frediani L; Heuser J; Höfener S J Comput Chem; 2017 Jul; 38(19):1693-1703. PubMed ID: 28514521 [TBL] [Abstract][Full Text] [Related]
7. New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states. Kowalski K; Piecuch P J Chem Phys; 2004 Jan; 120(4):1715-38. PubMed ID: 15268302 [TBL] [Abstract][Full Text] [Related]
8. Transition strengths and first-order properties of excited states from local coupled cluster CC2 response theory with density fitting. Kats D; Korona T; Schütz M J Chem Phys; 2007 Aug; 127(6):064107. PubMed ID: 17705588 [TBL] [Abstract][Full Text] [Related]
9. Efficient time-dependent density functional theory approximations for hybrid density functionals: analytical gradients and parallelization. Petrenko T; Kossmann S; Neese F J Chem Phys; 2011 Feb; 134(5):054116. PubMed ID: 21303101 [TBL] [Abstract][Full Text] [Related]
10. Coupled-cluster frozen-density embedding using resolution of the identity methods. Höfener S J Comput Chem; 2014 Sep; 35(23):1716-24. PubMed ID: 25043388 [TBL] [Abstract][Full Text] [Related]
11. The extended explicitly-correlated second-order approximate coupled-cluster singles and doubles ansatz suitable for response theory. Höfener S; Schieschke N; Klopper W; Köhn A J Chem Phys; 2019 May; 150(18):184110. PubMed ID: 31091924 [TBL] [Abstract][Full Text] [Related]
13. Calculation of two-photon absorption strengths with the approximate coupled cluster singles and doubles model CC2 using the resolution-of-identity approximation. Friese DH; Hättig C; Ruud K Phys Chem Chem Phys; 2012 Jan; 14(3):1175-84. PubMed ID: 22130199 [TBL] [Abstract][Full Text] [Related]
14. Calculation of electronic excitations using wave-function in wave-function frozen-density embedding. Höfener S; Visscher L J Chem Phys; 2012 Nov; 137(20):204120. PubMed ID: 23205994 [TBL] [Abstract][Full Text] [Related]
15. Coupled-cluster response theory with linear-r12 corrections: the CC2-R12 model for excitation energies. Fliegl H; Hättig C; Klopper W J Chem Phys; 2006 Jan; 124(4):044112. PubMed ID: 16460154 [TBL] [Abstract][Full Text] [Related]
17. Frozen density embedding with hybrid functionals. Laricchia S; Fabiano E; Della Sala F J Chem Phys; 2010 Oct; 133(16):164111. PubMed ID: 21033779 [TBL] [Abstract][Full Text] [Related]
18. Excitation energies from extended random phase approximation employed with approximate one- and two-electron reduced density matrices. Chatterjee K; Pernal K J Chem Phys; 2012 Nov; 137(20):204109. PubMed ID: 23205983 [TBL] [Abstract][Full Text] [Related]
19. State-Specific Embedding Potentials for Excitation-Energy Calculations. Daday C; König C; Valsson O; Neugebauer J; Filippi C J Chem Theory Comput; 2013 May; 9(5):2355-67. PubMed ID: 26583726 [TBL] [Abstract][Full Text] [Related]
20. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity. Castro-Palacios JC; Rubayo-Soneira J; Ishii K; Yamashita K J Chem Phys; 2007 Apr; 126(13):134315. PubMed ID: 17430040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]