These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
576 related articles for article (PubMed ID: 26653885)
1. Nanotechnology-Based Approaches for Guiding Neural Regeneration. Shah S; Solanki A; Lee KB Acc Chem Res; 2016 Jan; 49(1):17-26. PubMed ID: 26653885 [TBL] [Abstract][Full Text] [Related]
2. Controlling the Outgrowth and Functions of Neural Stem Cells: The Effect of Surface Topography. Simitzi C; Karali K; Ranella A; Stratakis E Chemphyschem; 2018 May; 19(10):1143-1163. PubMed ID: 29457860 [TBL] [Abstract][Full Text] [Related]
3. Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment. Jiang X; Cao HQ; Shi LY; Ng SY; Stanton LW; Chew SY Acta Biomater; 2012 Mar; 8(3):1290-302. PubMed ID: 22154861 [TBL] [Abstract][Full Text] [Related]
4. Nanotechnology Facilitated Cultured Neuronal Network and Its Applications. Singh S; Mishra S; Juha S; Pramanik M; Padmanabhan P; Gulyás B Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34074027 [TBL] [Abstract][Full Text] [Related]
6. Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons. Yang K; Jung H; Lee HR; Lee JS; Kim SR; Song KY; Cheong E; Bang J; Im SG; Cho SW ACS Nano; 2014 Aug; 8(8):7809-22. PubMed ID: 25050736 [TBL] [Abstract][Full Text] [Related]
7. Nanotopographical manipulation of focal adhesion formation for enhanced differentiation of human neural stem cells. Yang K; Jung K; Ko E; Kim J; Park KI; Kim J; Cho SW ACS Appl Mater Interfaces; 2013 Nov; 5(21):10529-40. PubMed ID: 23899585 [TBL] [Abstract][Full Text] [Related]
8. Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. Halim A; Qu KY; Zhang XF; Huang NP ACS Biomater Sci Eng; 2021 Aug; 7(8):3503-3529. PubMed ID: 34291638 [TBL] [Abstract][Full Text] [Related]
9. A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy. Yang L; Chueng SD; Li Y; Patel M; Rathnam C; Dey G; Wang L; Cai L; Lee KB Nat Commun; 2018 Aug; 9(1):3147. PubMed ID: 30089775 [TBL] [Abstract][Full Text] [Related]
10. Modulation of cell-cell interactions for neural tissue engineering: Potential therapeutic applications of cell adhesion molecules in nerve regeneration. Chooi WH; Chew SY Biomaterials; 2019 Mar; 197():327-344. PubMed ID: 30690420 [TBL] [Abstract][Full Text] [Related]
11. A multicellular, neuro-mimetic model to study nanoparticle uptake in cells of the central nervous system. Fernandes AR; Chari DM Integr Biol (Camb); 2014 Sep; 6(9):855-61. PubMed ID: 25017718 [TBL] [Abstract][Full Text] [Related]
12. Covalent growth factor tethering to direct neural stem cell differentiation and self-organization. Ham TR; Farrag M; Leipzig ND Acta Biomater; 2017 Apr; 53():140-151. PubMed ID: 28161574 [TBL] [Abstract][Full Text] [Related]
13. The potential of nanoparticles in stem cell differentiation and further therapeutic applications. Dayem AA; Choi HY; Yang GM; Kim K; Saha SK; Kim JH; Cho SG Biotechnol J; 2016 Dec; 11(12):1550-1560. PubMed ID: 27797150 [TBL] [Abstract][Full Text] [Related]
14. Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Solanki A; Kim JD; Lee KB Nanomedicine (Lond); 2008 Aug; 3(4):567-78. PubMed ID: 18694318 [TBL] [Abstract][Full Text] [Related]
15. Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. Yan J; Xu L; Welsh AM; Hatfield G; Hazel T; Johe K; Koliatsos VE PLoS Med; 2007 Feb; 4(2):e39. PubMed ID: 17298165 [TBL] [Abstract][Full Text] [Related]
17. Recent Advances in Nanomaterials for Modulation of Stem Cell Differentiation and Its Therapeutic Applications. Kim CD; Koo KM; Kim HJ; Kim TH Biosensors (Basel); 2024 Aug; 14(8):. PubMed ID: 39194636 [TBL] [Abstract][Full Text] [Related]
18. Nanotechnology in regenerative ophthalmology. Sahle FF; Kim S; Niloy KK; Tahia F; Fili CV; Cooper E; Hamilton DJ; Lowe TL Adv Drug Deliv Rev; 2019 Aug; 148():290-307. PubMed ID: 31707052 [TBL] [Abstract][Full Text] [Related]
19. Functional hyaluronate collagen scaffolds induce NSCs differentiation into functional neurons in repairing the traumatic brain injury. Duan H; Li X; Wang C; Hao P; Song W; Li M; Zhao W; Gao Y; Yang Z Acta Biomater; 2016 Nov; 45():182-195. PubMed ID: 27562609 [TBL] [Abstract][Full Text] [Related]