These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2116 related articles for article (PubMed ID: 26653891)
1. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Finak G; McDavid A; Yajima M; Deng J; Gersuk V; Shalek AK; Slichter CK; Miller HW; McElrath MJ; Prlic M; Linsley PS; Gottardo R Genome Biol; 2015 Dec; 16():278. PubMed ID: 26653891 [TBL] [Abstract][Full Text] [Related]
2. Exploiting single-cell expression to characterize co-expression replicability. Crow M; Paul A; Ballouz S; Huang ZJ; Gillis J Genome Biol; 2016 May; 17():101. PubMed ID: 27165153 [TBL] [Abstract][Full Text] [Related]
3. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering. Specht AT; Li J Bioinformatics; 2017 Mar; 33(5):764-766. PubMed ID: 27993778 [TBL] [Abstract][Full Text] [Related]
4. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Fan J; Salathia N; Liu R; Kaeser GE; Yung YC; Herman JL; Kaper F; Fan JB; Zhang K; Chun J; Kharchenko PV Nat Methods; 2016 Mar; 13(3):241-4. PubMed ID: 26780092 [TBL] [Abstract][Full Text] [Related]
5. SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization. Katayama S; Töhönen V; Linnarsson S; Kere J Bioinformatics; 2013 Nov; 29(22):2943-5. PubMed ID: 23995393 [TBL] [Abstract][Full Text] [Related]
6. Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation. Dueck H; Khaladkar M; Kim TK; Spaethling JM; Francis C; Suresh S; Fisher SA; Seale P; Beck SG; Bartfai T; Kuhn B; Eberwine J; Kim J Genome Biol; 2015 Jun; 16(1):122. PubMed ID: 26056000 [TBL] [Abstract][Full Text] [Related]
7. Differential Expression Analysis in Single-Cell Transcriptomics. Alessandrì L; Arigoni M; Calogero R Methods Mol Biol; 2019; 1979():425-432. PubMed ID: 31028652 [TBL] [Abstract][Full Text] [Related]
8. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Shalek AK; Satija R; Adiconis X; Gertner RS; Gaublomme JT; Raychowdhury R; Schwartz S; Yosef N; Malboeuf C; Lu D; Trombetta JJ; Gennert D; Gnirke A; Goren A; Hacohen N; Levin JZ; Park H; Regev A Nature; 2013 Jun; 498(7453):236-40. PubMed ID: 23685454 [TBL] [Abstract][Full Text] [Related]
9. Isoform-level gene expression patterns in single-cell RNA-sequencing data. Vu TN; Wills QF; Kalari KR; Niu N; Wang L; Pawitan Y; Rantalainen M Bioinformatics; 2018 Jul; 34(14):2392-2400. PubMed ID: 29490015 [TBL] [Abstract][Full Text] [Related]
10. The technology and biology of single-cell RNA sequencing. Kolodziejczyk AA; Kim JK; Svensson V; Marioni JC; Teichmann SA Mol Cell; 2015 May; 58(4):610-20. PubMed ID: 26000846 [TBL] [Abstract][Full Text] [Related]
11. Beyond comparisons of means: understanding changes in gene expression at the single-cell level. Vallejos CA; Richardson S; Marioni JC Genome Biol; 2016 Apr; 17():70. PubMed ID: 27083558 [TBL] [Abstract][Full Text] [Related]
12. Integration of single-cell RNA-seq data into population models to characterize cancer metabolism. Damiani C; Maspero D; Di Filippo M; Colombo R; Pescini D; Graudenzi A; Westerhoff HV; Alberghina L; Vanoni M; Mauri G PLoS Comput Biol; 2019 Feb; 15(2):e1006733. PubMed ID: 30818329 [TBL] [Abstract][Full Text] [Related]
13. Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Leng N; Chu LF; Barry C; Li Y; Choi J; Li X; Jiang P; Stewart RM; Thomson JA; Kendziorski C Nat Methods; 2015 Oct; 12(10):947-950. PubMed ID: 26301841 [TBL] [Abstract][Full Text] [Related]
14. SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nakamura T; Yabuta Y; Okamoto I; Aramaki S; Yokobayashi S; Kurimoto K; Sekiguchi K; Nakagawa M; Yamamoto T; Saitou M Nucleic Acids Res; 2015 May; 43(9):e60. PubMed ID: 25722368 [TBL] [Abstract][Full Text] [Related]
15. SCALE: modeling allele-specific gene expression by single-cell RNA sequencing. Jiang Y; Zhang NR; Li M Genome Biol; 2017 Apr; 18(1):74. PubMed ID: 28446220 [TBL] [Abstract][Full Text] [Related]
16. The potential of single-cell profiling in plants. Efroni I; Birnbaum KD Genome Biol; 2016 Apr; 17():65. PubMed ID: 27048384 [TBL] [Abstract][Full Text] [Related]
17. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Ståhl PL; Salmén F; Vickovic S; Lundmark A; Navarro JF; Magnusson J; Giacomello S; Asp M; Westholm JO; Huss M; Mollbrink A; Linnarsson S; Codeluppi S; Borg Å; Pontén F; Costea PI; Sahlén P; Mulder J; Bergmann O; Lundeberg J; Frisén J Science; 2016 Jul; 353(6294):78-82. PubMed ID: 27365449 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomics: advances and approaches. Dong Z; Chen Y Sci China Life Sci; 2013 Oct; 56(10):960-7. PubMed ID: 24091688 [TBL] [Abstract][Full Text] [Related]
19. The reduction of gene expression variability from single cells to populations follows simple statistical laws. Piras V; Selvarajoo K Genomics; 2015 Mar; 105(3):137-44. PubMed ID: 25554103 [TBL] [Abstract][Full Text] [Related]
20. A novel method to prioritize RNAseq data for post-hoc analysis based on absolute changes in transcript abundance. McNutt P; Gut I; Hubbard K; Beske P Stat Appl Genet Mol Biol; 2015 Jun; 14(3):227-41. PubMed ID: 25781714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]