BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26653937)

  • 1. Characterization of Positively Charged Lipid Shell Microbubbles with Tunable Resistive Pulse Sensing (TRPS) Method: A Technical Note.
    Manta S; Delalande A; Bessodes M; Bureau MF; Scherman D; Pichon C; Mignet N
    Ultrasound Med Biol; 2016 Feb; 42(2):624-30. PubMed ID: 26653937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observations of Tunable Resistive Pulse Sensing for Exosome Analysis: Improving System Sensitivity and Stability.
    Anderson W; Lane R; Korbie D; Trau M
    Langmuir; 2015 Jun; 31(23):6577-87. PubMed ID: 25970769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Tunable Resistive Pulse Sensing (TRPS) Technology for Particle Size Distribution in Vaccine Formulations - A Comparative Study with Dynamic Light Scattering.
    Misra R; Fung G; Sharma S; Hu J; Kirkitadze M
    Pharm Res; 2024 May; 41(5):1021-1029. PubMed ID: 38649535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Humic acids modify the pulse size distributions in the characterization of plastic microparticles by Tunable Resistive Pulse Sensing.
    Vázquez Juiz ML; Soto Gómez D; Pérez Rodríguez P; Paradelo M; López Periago JE
    J Contam Hydrol; 2018 Nov; 218():59-69. PubMed ID: 30361114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of vesicular stomatitis virus populations by tunable resistive pulse sensing.
    Akpinar F; Yin J
    J Virol Methods; 2015 Jun; 218():71-6. PubMed ID: 25698465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of tunable resistive pulse sensing.
    Weatherall E; Willmott GR
    Analyst; 2015 May; 140(10):3318-34. PubMed ID: 25738184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Resistive Pulse Sensing for the Characterization of Extracellular Vesicles.
    Maas SL; Broekman ML; de Vrij J
    Methods Mol Biol; 2017; 1545():21-33. PubMed ID: 27943204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors.
    Wharton JE; Jin P; Sexton LT; Horne LP; Sherrill SA; Mino WK; Martin CR
    Small; 2007 Aug; 3(8):1424-30. PubMed ID: 17615589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring bacterial growth using tunable resistive pulse sensing with a pore-based technique.
    Yu AC; Loo JF; Yu S; Kong SK; Chan TF
    Appl Microbiol Biotechnol; 2014 Jan; 98(2):855-62. PubMed ID: 24287933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of Zeta Potential via Nanoparticle Translocation Velocities through a Tunable Nanopore: Using DNA-modified Particles as an Example.
    Blundell EL; Vogel R; Platt M
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27805605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle ζ-potential measurements using tunable resistive pulse sensing with variable pressure.
    Eldridge JA; Willmott GR; Anderson W; Vogel R
    J Colloid Interface Sci; 2014 Sep; 429():45-52. PubMed ID: 24935188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive and biphasic pulses in tunable resistive pulse sensing.
    Weatherall E; Willmott GR
    J Phys Chem B; 2015 Apr; 119(16):5328-35. PubMed ID: 25826249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution characterization of engineered nanomaterial dispersions in complex media using tunable resistive pulse sensing technology.
    Pal AK; Aalaei I; Gadde S; Gaines P; Schmidt D; Demokritou P; Bello D
    ACS Nano; 2014 Sep; 8(9):9003-15. PubMed ID: 25093451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbubble size isolation by differential centrifugation.
    Feshitan JA; Chen CC; Kwan JJ; Borden MA
    J Colloid Interface Sci; 2009 Jan; 329(2):316-24. PubMed ID: 18950786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal Dispersion of Nanoparticles: A Comprehensive Evaluation of Size Distribution with 9 Size Measurement Methods.
    Varenne F; Makky A; Gaucher-Delmas M; Violleau F; Vauthier C
    Pharm Res; 2016 May; 33(5):1220-34. PubMed ID: 26864858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Resistive Pulse Sensing: Better Size and Charge Measurements for Submicrometer Colloids.
    Willmott GR
    Anal Chem; 2018 Mar; 90(5):2987-2995. PubMed ID: 29441785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-ordinated detection of microparticles using tunable resistive pulse sensing and fluorescence spectroscopy.
    Hauer P; Le Ru EC; Willmott GR
    Biomicrofluidics; 2015 Jan; 9(1):014110. PubMed ID: 25713692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing.
    Vogel R; Coumans FA; Maltesen RG; Böing AN; Bonnington KE; Broekman ML; Broom MF; Buzás EI; Christiansen G; Hajji N; Kristensen SR; Kuehn MJ; Lund SM; Maas SL; Nieuwland R; Osteikoetxea X; Schnoor R; Scicluna BJ; Shambrook M; de Vrij J; Mann SI; Hill AF; Pedersen S
    J Extracell Vesicles; 2016; 5():31242. PubMed ID: 27680301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New and conventional pore size tests in virus-removing membranes.
    Duek A; Arkhangelsky E; Krush R; Brenner A; Gitis V
    Water Res; 2012 May; 46(8):2505-14. PubMed ID: 22265254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle transport in conical-shaped nanopores.
    Lan WJ; Holden DA; Zhang B; White HS
    Anal Chem; 2011 May; 83(10):3840-7. PubMed ID: 21495727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.