These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26653937)

  • 21. Size and ζ-Potential Measurement of Silica Nanoparticles in Serum Using Tunable Resistive Pulse Sensing.
    Sikora A; Shard AG; Minelli C
    Langmuir; 2016 Mar; 32(9):2216-24. PubMed ID: 26869024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental noise reduction for tunable resistive pulse sensing of extracellular vesicles.
    Ejjigu N; Abdelgadir K; Flaten Z; Hoff C; Li CZ; Sun D
    Sens Actuators A Phys; 2022 Oct; 346():. PubMed ID: 37273787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation of entrance effects on particle electrophoretic behavior near a nanopore for resistive pulse sensing.
    Hsu C; Lin CY; Alizadeh A; Daiguji H; Hsu WL
    Electrophoresis; 2021 Nov; 42(21-22):2206-2214. PubMed ID: 34472124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acoustic characterization of monodisperse lipid-coated microbubbles: relationship between size and shell viscoelastic properties.
    Parrales MA; Fernandez JM; Perez-Saborid M; Kopechek JA; Porter TM
    J Acoust Soc Am; 2014 Sep; 136(3):1077. PubMed ID: 25190383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pulse Size Distributions in Tunable Resistive Pulse Sensing.
    Weatherall E; Hauer P; Vogel R; Willmott GR
    Anal Chem; 2016 Sep; 88(17):8648-56. PubMed ID: 27469286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resistive-pulse detection of short dsDNAs using a chemically functionalized conical nanopore sensor.
    Kececi K; Sexton LT; Buyukserin F; Martin CR
    Nanomedicine (Lond); 2008 Dec; 3(6):787-96. PubMed ID: 19025453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Charged particle separation by an electrically tunable nanoporous membrane.
    Jou IA; Melnikov DV; Nadtochiy A; Gracheva ME
    Nanotechnology; 2014 Apr; 25(14):145201. PubMed ID: 24621944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preanalytical, analytical, and biological variation of blood plasma submicron particle levels measured with nanoparticle tracking analysis and tunable resistive pulse sensing.
    Mørk M; Pedersen S; Botha J; Lund SM; Kristensen SR
    Scand J Clin Lab Invest; 2016 Sep; 76(5):349-60. PubMed ID: 27195974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-particle optical sizing of microbubbles.
    Satinover SJ; Dove JD; Borden MA
    Ultrasound Med Biol; 2014 Jan; 40(1):138-47. PubMed ID: 24139917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting and size characterization of monodisperse microbubbles.
    Rickel JMR; Dixon AJ; Klibanov AL; Hossack JA
    Lab Chip; 2018 Aug; 18(17):2653-2664. PubMed ID: 30070301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable ultrathin membranes with nonvolatile pore shape memory.
    Kuroki H; Islam C; Tokarev I; Hu H; Liu G; Minko S
    ACS Appl Mater Interfaces; 2015 May; 7(19):10401-6. PubMed ID: 25912512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measuring particle size distribution and mass concentration of nanoplastics and microplastics: addressing some analytical challenges in the sub-micron size range.
    Caputo F; Vogel R; Savage J; Vella G; Law A; Della Camera G; Hannon G; Peacock B; Mehn D; Ponti J; Geiss O; Aubert D; Prina-Mello A; Calzolai L
    J Colloid Interface Sci; 2021 Apr; 588():401-417. PubMed ID: 33422789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel analytical methods to assess the chemical and physical properties of liposomes.
    Kothalawala N; Mudalige TK; Sisco P; Linder SW
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Aug; 1091():14-20. PubMed ID: 29803685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing.
    Coumans FA; van der Pol E; Böing AN; Hajji N; Sturk G; van Leeuwen TG; Nieuwland R
    J Extracell Vesicles; 2014; 3():25922. PubMed ID: 25498889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions.
    Roberts GS; Yu S; Zeng Q; Chan LC; Anderson W; Colby AH; Grinstaff MW; Reid S; Vogel R
    Biosens Bioelectron; 2012 Jan; 31(1):17-25. PubMed ID: 22019099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore.
    Wang J; Martin CR
    Nanomedicine (Lond); 2008 Feb; 3(1):13-20. PubMed ID: 18393663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Speed Multipass Coulter Counter with Ultrahigh Resolution.
    Edwards MA; German SR; Dick JE; Bard AJ; White HS
    ACS Nano; 2015 Dec; 9(12):12274-82. PubMed ID: 26549738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of microbubble suspensions by co-axial electrohydrodynamic atomization.
    Farook U; Zhang HB; Edirisinghe MJ; Stride E; Saffari N
    Med Eng Phys; 2007 Sep; 29(7):749-54. PubMed ID: 17035065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optically induced resonance of nanoparticle-loaded microbubbles.
    Dove JD; Borden MA; Murray TW
    Opt Lett; 2014 Jul; 39(13):3732-5. PubMed ID: 24978723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of charged macromolecule capture by nanopores in a salt gradient.
    Chou T
    J Chem Phys; 2009 Jul; 131(3):034703. PubMed ID: 19624217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.