These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 26654281)

  • 1. Ultralow-Loss CMOS Copper Plasmonic Waveguides.
    Fedyanin DY; Yakubovsky DI; Kirtaev RV; Volkov VS
    Nano Lett; 2016 Jan; 16(1):362-6. PubMed ID: 26654281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics.
    Delacour C; Blaize S; Grosse P; Fedeli JM; Bruyant A; Salas-Montiel R; Lerondel G; Chelnokov A
    Nano Lett; 2010 Aug; 10(8):2922-6. PubMed ID: 20698605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aluminum plasmonic waveguides co-integrated with Si
    Dabos G; Manolis A; Tsiokos D; Ketzaki D; Chatzianagnostou E; Markey L; Rusakov D; Weeber JC; Dereux A; Giesecke AL; Porschatis C; Wahlbrink T; Chmielak B; Pleros N
    Sci Rep; 2018 Sep; 8(1):13380. PubMed ID: 30190537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CMOS-Compatible Electronic-Plasmonic Transducers Based on Plasmonic Tunnel Junctions and Schottky Diodes.
    Wang F; Liu Y; Hoang TX; Chu HS; Chua SJ; Nijhuis CA
    Small; 2022 Jan; 18(1):e2105684. PubMed ID: 34741404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and investigation of N-type metal/insulator/semiconductor/metal structure two-port electro-plasmonic addressed routing switch.
    Moazzam MK; Kaatuzian H
    Appl Opt; 2015 Jul; 54(20):6199-207. PubMed ID: 26193394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subwavelength InSb-based Slot wavguides for THz transport: concept and practical implementations.
    Ma Y; Zhou J; Pištora J; Eldlio M; Nguyen-Huu N; Maeda H; Wu Q; Cada M
    Sci Rep; 2016 Dec; 6():38784. PubMed ID: 27924939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric hybrid plasmonic waveguides with centimeter-scale propagation length under subwavelength confinement for photonic components.
    Wei W; Zhang X; Ren X
    Nanoscale Res Lett; 2014; 9(1):599. PubMed ID: 25400529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon-based plasmonic waveguides.
    Krasavin AV; Zayats AV
    Opt Express; 2010 May; 18(11):11791-9. PubMed ID: 20589040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs).
    Zektzer R; Desiatov B; Mazurski N; Bozhevolnyi SI; Levy U
    Opt Express; 2014 Sep; 22(18):22009-17. PubMed ID: 25321575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale.
    Wu M; Han Z; Van V
    Opt Express; 2010 May; 18(11):11728-36. PubMed ID: 20589033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-high light confinement and ultra-long propagation distance design for integratable optical chips based on plasmonic technology.
    Zheng K; Yuan Y; He J; Gu G; Zhang F; Chen Y; Song J; Qu J
    Nanoscale; 2019 Mar; 11(10):4601-4613. PubMed ID: 30810128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A silicon-based electrical source of surface plasmon polaritons.
    Walters RJ; van Loon RV; Brunets I; Schmitz J; Polman A
    Nat Mater; 2010 Jan; 9(1):21-5. PubMed ID: 19966790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CMOS plasmonics in WDM data transmission: 200 Gb/s (8 × 25Gb/s) transmission over aluminum plasmonic waveguides.
    Dabos G; Manolis A; Papaioannou S; Tsiokos D; Markey L; Weeber JC; Dereux A; Giesecke AL; Porschatis C; Chmielak B; Pleros N
    Opt Express; 2018 May; 26(10):12469-12478. PubMed ID: 29801284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrically driven monolithic subwavelength plasmonic interconnect circuits.
    Liu Y; Zhang J; Liu H; Wang S; Peng LM
    Sci Adv; 2017 Oct; 3(10):e1701456. PubMed ID: 29062890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waveguide-Integrated Compact Plasmonic Resonators for On-Chip Mid-Infrared Laser Spectroscopy.
    Chen C; Mohr DA; Choi HK; Yoo D; Li M; Oh SH
    Nano Lett; 2018 Dec; 18(12):7601-7608. PubMed ID: 30216715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Electro-Optical Pumping of Active Plasmonic Nanostructures.
    Vyshnevyy AA; Fedyanin DY
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32365496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degenerate four-wave mixing in silicon hybrid plasmonic waveguides.
    Duffin TJ; Nielsen MP; Diaz F; Palomba S; Maier SA; Oulton RF
    Opt Lett; 2016 Jan; 41(1):155-8. PubMed ID: 26696182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonreciprocal dielectric-loaded plasmonic waveguides using magneto-optical effect of Fe.
    Kaihara T; Shimizu H
    Opt Express; 2017 Jan; 25(2):730-748. PubMed ID: 28157962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental confirmation of self-imaging effect between guided light and surface plasmon polaritons in hybrid plasmonic waveguides.
    Okamoto H; Kamada S; Yamaguchi K; Haraguchi M; Okamoto T
    Sci Rep; 2022 Oct; 12(1):17943. PubMed ID: 36289353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-Low-Loss Mid-Infrared Plasmonic Waveguides Based on Multilayer Graphene Metamaterials.
    Huang CC; Chang RJ; Cheng CW
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.