These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26654548)

  • 1. Optical Interference Enhances Nonlinear Spectroscopic Sensitivity: When Light Gives You Lemons, Model Lemonade.
    Kearns PM; O'Brien DB; Massari AM
    J Phys Chem Lett; 2016 Jan; 7(1):62-8. PubMed ID: 26654548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated vibrational sum frequency generation from a multilayer thin film system with two active interfaces.
    O'Brien DB; Massari AM
    J Chem Phys; 2013 Apr; 138(15):154708. PubMed ID: 23614437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nondestructive in situ characterization of molecular structures at the surface and buried interface of silicon-supported low-k dielectric films.
    Myers JN; Zhang X; Bielefeld J; Lin Q; Chen Z
    J Phys Chem B; 2015 Jan; 119(4):1736-46. PubMed ID: 25558913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling third-harmonic generation from layered materials using nonlinear optical matrices.
    Rodríguez C; Rudolph W
    Opt Express; 2014 Oct; 22(21):25984-92. PubMed ID: 25401632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of buried microstructures by nonlinear light scattering spectroscopy.
    de Beer AG; de Aguiar HB; Nijsen JF; Roke S
    Phys Rev Lett; 2009 Mar; 102(9):095502. PubMed ID: 19392531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces.
    Jubb AM; Hua W; Allen HC
    Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sum frequency generation vibrational spectroscopic studies on buried heterogeneous biointerfaces.
    Zhang C; Jasensky J; Leng C; Del Grosso C; Smith GD; Wilker JJ; Chen Z
    Opt Lett; 2014 May; 39(9):2715-8. PubMed ID: 24784085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation.
    Tong Y; Zhao Y; Li N; Osawa M; Davies PB; Ye S
    J Chem Phys; 2010 Jul; 133(3):034704. PubMed ID: 20649347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-molecule approach for determining orientation at isotropic surfaces by nonlinear vibrational spectroscopy.
    Hore DK; Beaman DK; Parks DH; Richmond GL
    J Phys Chem B; 2005 Sep; 109(35):16846-51. PubMed ID: 16853143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond time-resolved and two-dimensional vibrational sum frequency spectroscopic instrumentation to study structural dynamics at interfaces.
    Ghosh A; Smits M; Bredenbeck J; Dijkhuizen N; Bonn M
    Rev Sci Instrum; 2008 Sep; 79(9):093907. PubMed ID: 19044428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Irreducible representation and projection operator application to understanding nonlinear optical phenomena: hyper-Raman, sum frequency generation, and four-wave mixing spectroscopy.
    Lee SH; Wang J; Krimm S; Chen Z
    J Phys Chem A; 2006 Jun; 110(22):7035-44. PubMed ID: 16737251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing organic field effect transistors in situ during operation using SFG.
    Ye H; Abu-Akeel A; Huang J; Katz HE; Gracias DH
    J Am Chem Soc; 2006 May; 128(20):6528-9. PubMed ID: 16704231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissemination of an optical frequency comb over fiber with 3 × 10(-18) fractional accuracy.
    Marra G; Margolis HS; Richardson DJ
    Opt Express; 2012 Jan; 20(2):1775-82. PubMed ID: 22274521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional nonlinear optical activity spectroscopy of coupled multi-chromophore system.
    Choi JH; Cheon S; Lee H; Cho M
    Phys Chem Chem Phys; 2008 Jul; 10(26):3839-56. PubMed ID: 18688382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of single-channel heterodyne-detected sum frequency generation spectroscopy and its application to the water/vapor interface.
    Yamaguchi S
    J Chem Phys; 2015 Jul; 143(3):034202. PubMed ID: 26203020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental chemistry at vapor/water interfaces: insights from vibrational sum frequency generation spectroscopy.
    Jubb AM; Hua W; Allen HC
    Annu Rev Phys Chem; 2012; 63():107-30. PubMed ID: 22224702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deduction of structural information of interfacial proteins by combined vibrational spectroscopic methods.
    Wang J; Paszti Z; Clarke ML; Chen X; Chen Z
    J Phys Chem B; 2007 May; 111(21):6088-95. PubMed ID: 17511496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. THz-driven nonlinear intersubband dynamics in quantum wells.
    Dietze D; Darmo J; Unterrainer K
    Opt Express; 2012 Oct; 20(21):23053-60. PubMed ID: 23188269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring molecular reorientation at liquid surfaces with time-resolved sum-frequency spectroscopy: a theoretical framework.
    Nienhuys HK; Bonn M
    J Phys Chem B; 2009 May; 113(21):7564-73. PubMed ID: 19413304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy.
    Ji N; Ostroverkhov V; Tian CS; Shen YR
    Phys Rev Lett; 2008 Mar; 100(9):096102. PubMed ID: 18352727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.