These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 26654729)

  • 1. Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry.
    Brown AM; Sundararaman R; Narang P; Goddard WA; Atwater HA
    ACS Nano; 2016 Jan; 10(1):957-66. PubMed ID: 26654729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper plasmonics and catalysis: role of electron-phonon interactions in dephasing localized surface plasmons.
    Sun QC; Ding Y; Goodman SM; Funke HH; Nagpal P
    Nanoscale; 2014 Nov; 6(21):12450-7. PubMed ID: 25260183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical predictions for hot-carrier generation from surface plasmon decay.
    Sundararaman R; Narang P; Jermyn AS; Goddard WA; Atwater HA
    Nat Commun; 2014 Dec; 5():5788. PubMed ID: 25511713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot carriers generated by plasmons: where are they generated and where do they go from there?
    Khurgin JB
    Faraday Discuss; 2019 May; 214():35-58. PubMed ID: 30806397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations.
    Cui L; Zhu Y; Nordlander P; Di Ventra M; Natelson D
    Nano Lett; 2021 Mar; 21(6):2658-2665. PubMed ID: 33710898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay between plasmon and single-particle excitations in a metal nanocluster.
    Ma J; Wang Z; Wang LW
    Nat Commun; 2015 Dec; 6():10107. PubMed ID: 26673449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable electron and hole injection channels at plasmonic Al-TiO
    Ma J; Zhang X; Gao S
    Nanoscale; 2021 Sep; 13(33):14073-14080. PubMed ID: 34477688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic Plasmon-Phonon Interactions in Highly Doped Graphene: A Near-Field Imaging Study.
    Bezares FJ; Sanctis A; Saavedra JRM; Woessner A; Alonso-González P; Amenabar I; Chen J; Bointon TH; Dai S; Fogler MM; Basov DN; Hillenbrand R; Craciun MF; García de Abajo FJ; Russo S; Koppens FHL
    Nano Lett; 2017 Oct; 17(10):5908-5913. PubMed ID: 28809573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements.
    Reddy H; Wang K; Kudyshev Z; Zhu L; Yan S; Vezzoli A; Higgins SJ; Gavini V; Boltasseva A; Reddy P; Shalaev VM; Meyhofer E
    Science; 2020 Jul; 369(6502):423-426. PubMed ID: 32499398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres.
    Derkachova A; Kolwas K; Demchenko I
    Plasmonics; 2016; 11():941-951. PubMed ID: 27340380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot-Hole
    Tagliabue G; DuChene JS; Habib A; Sundararaman R; Atwater HA
    ACS Nano; 2020 May; 14(5):5788-5797. PubMed ID: 32286797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio study of hot electrons in GaAs.
    Bernardi M; Vigil-Fowler D; Ong CS; Neaton JB; Louie SG
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5291-6. PubMed ID: 25870287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot Electrons in a Steady State: Interband vs Intraband Excitation of Plasmonic Gold.
    Lee A; Wu S; Yim JE; Zhao B; Sheldon MT
    ACS Nano; 2024 Jul; 18(29):19077-19085. PubMed ID: 38996185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals.
    Bernardi M; Mustafa J; Neaton JB; Louie SG
    Nat Commun; 2015 Jun; 6():7044. PubMed ID: 26033445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of the Interband Transitions in Gold and Silver on the Dynamics of Propagating and Localized Surface Plasmons.
    Kolwas K; Derkachova A
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32707713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased rise time of electron temperature during adiabatic plasmon focusing.
    Lozan O; Sundararaman R; Ea-Kim B; Rampnoux JM; Narang P; Dilhaire S; Lalanne P
    Nat Commun; 2017 Nov; 8(1):1656. PubMed ID: 29162822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots.
    Harutyunyan H; Martinson AB; Rosenmann D; Khorashad LK; Besteiro LV; Govorov AO; Wiederrecht GP
    Nat Nanotechnol; 2015 Sep; 10(9):770-4. PubMed ID: 26237345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-energy acoustic plasmons at metal surfaces.
    Diaconescu B; Pohl K; Vattuone L; Savio L; Hofmann P; Silkin VM; Pitarke JM; Chulkov EV; Echenique PM; Farías D; Rocca M
    Nature; 2007 Jul; 448(7149):57-9. PubMed ID: 17611537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111).
    Kroes GJ; Pavanello M; Blanco-Rey M; Alducin M; Auerbach DJ
    J Chem Phys; 2014 Aug; 141(5):054705. PubMed ID: 25106598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.