These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
444 related articles for article (PubMed ID: 26654764)
1. Amorphous polyphosphate-hydroxyapatite: A morphogenetically active substrate for bone-related SaOS-2 cells in vitro. Müller WEG; Tolba E; Schröder HC; Muñoz-Espí R; Diehl-Seifert B; Wang X Acta Biomater; 2016 Feb; 31():358-367. PubMed ID: 26654764 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of amorphous strontium polyphosphate microparticles that induce mineralization of bone cells in vitro and in vivo. Müller WEG; Tolba E; Ackermann M; Neufurth M; Wang S; Feng Q; Schröder HC; Wang X Acta Biomater; 2017 Mar; 50():89-101. PubMed ID: 28017868 [TBL] [Abstract][Full Text] [Related]
3. Nanoparticle-directed and ionically forced polyphosphate coacervation: a versatile and reversible core-shell system for drug delivery. Müller WEG; Tolba E; Wang S; Neufurth M; Lieberwirth I; Ackermann M; Schröder HC; Wang X Sci Rep; 2020 Oct; 10(1):17147. PubMed ID: 33051468 [TBL] [Abstract][Full Text] [Related]
4. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Neufurth M; Wang X; Wang S; Steffen R; Ackermann M; Haep ND; Schröder HC; Müller WEG Acta Biomater; 2017 Dec; 64():377-388. PubMed ID: 28966095 [TBL] [Abstract][Full Text] [Related]
5. Amorphous polyphosphate/amorphous calcium carbonate implant material with enhanced bone healing efficacy in a critical-size defect in rats. Wang X; Ackermann M; Wang S; Tolba E; Neufurth M; Feng Q; Schröder HC; Müller WE Biomed Mater; 2016 May; 11(3):035005. PubMed ID: 27147677 [TBL] [Abstract][Full Text] [Related]
6. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering. Dhivya S; Keshav Narayan A; Logith Kumar R; Viji Chandran S; Vairamani M; Selvamurugan N Cell Prolif; 2018 Feb; 51(1):. PubMed ID: 29159895 [TBL] [Abstract][Full Text] [Related]
7. The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis. Wang X; Schröder HC; Grebenjuk V; Diehl-Seifert B; Mailänder V; Steffen R; Schloßmacher U; Müller WE Mar Drugs; 2014 Feb; 12(2):1131-47. PubMed ID: 24566262 [TBL] [Abstract][Full Text] [Related]
8. The morphogenetically active polymer, inorganic polyphosphate complexed with GdCl3, as an inducer of hydroxyapatite formation in vitro. Wang X; Huang J; Wang K; Neufurth M; Schröder HC; Wang S; Müller WEG Biochem Pharmacol; 2016 Feb; 102():97-106. PubMed ID: 26731190 [TBL] [Abstract][Full Text] [Related]
9. Dual effect of inorganic polymeric phosphate/polyphosphate on osteoblasts and osteoclasts in vitro. Wang X; Schröder HC; Diehl-Seifert B; Kropf K; Schlossmacher U; Wiens M; Müller WE J Tissue Eng Regen Med; 2013 Oct; 7(10):767-76. PubMed ID: 22411908 [TBL] [Abstract][Full Text] [Related]
10. Amorphous, Smart, and Bioinspired Polyphosphate Nano/Microparticles: A Biomaterial for Regeneration and Repair of Osteo-Articular Impairments In-Situ. Müller WEG; Neufurth M; Wang S; Ackermann M; Muñoz-Espí R; Feng Q; Lu Q; Schröder HC; Wang X Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29385104 [TBL] [Abstract][Full Text] [Related]
11. Amplified morphogenetic and bone forming activity of amorphous versus crystalline calcium phosphate/polyphosphate. Müller WEG; Ackermann M; Al-Nawas B; Righesso LAR; Muñoz-Espí R; Tolba E; Neufurth M; Schröder HC; Wang X Acta Biomater; 2020 Dec; 118():233-247. PubMed ID: 33075552 [TBL] [Abstract][Full Text] [Related]
12. Morphogenetically-Active Barrier Membrane for Guided Bone Regeneration, Based on Amorphous Polyphosphate. Wang X; Ackermann M; Neufurth M; Wang S; Schröder HC; Müller WEG Mar Drugs; 2017 May; 15(5):. PubMed ID: 28513544 [TBL] [Abstract][Full Text] [Related]
13. Long-chain polyphosphate in osteoblast matrix vesicles: Enrichment and inhibition of mineralization. Li L; Khong ML; Lui ELH; Mebarek S; Magne D; Buchet R; Tanner JA Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):199-209. PubMed ID: 30312769 [TBL] [Abstract][Full Text] [Related]
14. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630 [TBL] [Abstract][Full Text] [Related]
15. Molecular and biochemical approach for understanding the transition of amorphous to crystalline calcium phosphate deposits in human teeth. Müller WEG; Neufurth M; Ushijima H; Muñoz-Espí R; Müller LK; Wang S; Schröder HC; Wang X Dent Mater; 2022 Dec; 38(12):2014-2029. PubMed ID: 36424205 [TBL] [Abstract][Full Text] [Related]
16. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study. Çakmak S; Çakmak AS; Gümüşderelioğlu M Biomed Mater; 2013 Aug; 8(4):045014. PubMed ID: 23860136 [TBL] [Abstract][Full Text] [Related]
17. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285 [TBL] [Abstract][Full Text] [Related]
18. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier. Kasten P; Vogel J; Luginbühl R; Niemeyer P; Tonak M; Lorenz H; Helbig L; Weiss S; Fellenberg J; Leo A; Simank HG; Richter W Biomaterials; 2005 Oct; 26(29):5879-89. PubMed ID: 15913762 [TBL] [Abstract][Full Text] [Related]
19. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic composite scaffolds based mineralization of hydroxyapatite on electrospun calcium-containing poly(vinyl alcohol) nanofibers. Chang W; Mu X; Zhu X; Ma G; Li C; Xu F; Nie J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4369-76. PubMed ID: 23910355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]