BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 26654764)

  • 1. Amorphous polyphosphate-hydroxyapatite: A morphogenetically active substrate for bone-related SaOS-2 cells in vitro.
    Müller WEG; Tolba E; Schröder HC; Muñoz-Espí R; Diehl-Seifert B; Wang X
    Acta Biomater; 2016 Feb; 31():358-367. PubMed ID: 26654764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of amorphous strontium polyphosphate microparticles that induce mineralization of bone cells in vitro and in vivo.
    Müller WEG; Tolba E; Ackermann M; Neufurth M; Wang S; Feng Q; Schröder HC; Wang X
    Acta Biomater; 2017 Mar; 50():89-101. PubMed ID: 28017868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticle-directed and ionically forced polyphosphate coacervation: a versatile and reversible core-shell system for drug delivery.
    Müller WEG; Tolba E; Wang S; Neufurth M; Lieberwirth I; Ackermann M; Schröder HC; Wang X
    Sci Rep; 2020 Oct; 10(1):17147. PubMed ID: 33051468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone.
    Neufurth M; Wang X; Wang S; Steffen R; Ackermann M; Haep ND; Schröder HC; Müller WEG
    Acta Biomater; 2017 Dec; 64():377-388. PubMed ID: 28966095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amorphous polyphosphate/amorphous calcium carbonate implant material with enhanced bone healing efficacy in a critical-size defect in rats.
    Wang X; Ackermann M; Wang S; Tolba E; Neufurth M; Feng Q; Schröder HC; Müller WE
    Biomed Mater; 2016 May; 11(3):035005. PubMed ID: 27147677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering.
    Dhivya S; Keshav Narayan A; Logith Kumar R; Viji Chandran S; Vairamani M; Selvamurugan N
    Cell Prolif; 2018 Feb; 51(1):. PubMed ID: 29159895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The morphogenetically active polymer, inorganic polyphosphate complexed with GdCl3, as an inducer of hydroxyapatite formation in vitro.
    Wang X; Huang J; Wang K; Neufurth M; Schröder HC; Wang S; Müller WEG
    Biochem Pharmacol; 2016 Feb; 102():97-106. PubMed ID: 26731190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis.
    Wang X; Schröder HC; Grebenjuk V; Diehl-Seifert B; Mailänder V; Steffen R; Schloßmacher U; Müller WE
    Mar Drugs; 2014 Feb; 12(2):1131-47. PubMed ID: 24566262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual effect of inorganic polymeric phosphate/polyphosphate on osteoblasts and osteoclasts in vitro.
    Wang X; Schröder HC; Diehl-Seifert B; Kropf K; Schlossmacher U; Wiens M; Müller WE
    J Tissue Eng Regen Med; 2013 Oct; 7(10):767-76. PubMed ID: 22411908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplified morphogenetic and bone forming activity of amorphous versus crystalline calcium phosphate/polyphosphate.
    Müller WEG; Ackermann M; Al-Nawas B; Righesso LAR; Muñoz-Espí R; Tolba E; Neufurth M; Schröder HC; Wang X
    Acta Biomater; 2020 Dec; 118():233-247. PubMed ID: 33075552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphogenetically-Active Barrier Membrane for Guided Bone Regeneration, Based on Amorphous Polyphosphate.
    Wang X; Ackermann M; Neufurth M; Wang S; Schröder HC; Müller WEG
    Mar Drugs; 2017 May; 15(5):. PubMed ID: 28513544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-chain polyphosphate in osteoblast matrix vesicles: Enrichment and inhibition of mineralization.
    Li L; Khong ML; Lui ELH; Mebarek S; Magne D; Buchet R; Tanner JA
    Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):199-209. PubMed ID: 30312769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.
    Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG
    Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amorphous, Smart, and Bioinspired Polyphosphate Nano/Microparticles: A Biomaterial for Regeneration and Repair of Osteo-Articular Impairments In-Situ.
    Müller WEG; Neufurth M; Wang S; Ackermann M; Muñoz-Espí R; Feng Q; Lu Q; Schröder HC; Wang X
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29385104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and biochemical approach for understanding the transition of amorphous to crystalline calcium phosphate deposits in human teeth.
    Müller WEG; Neufurth M; Ushijima H; Muñoz-Espí R; Müller LK; Wang S; Schröder HC; Wang X
    Dent Mater; 2022 Dec; 38(12):2014-2029. PubMed ID: 36424205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study.
    Çakmak S; Çakmak AS; Gümüşderelioğlu M
    Biomed Mater; 2013 Aug; 8(4):045014. PubMed ID: 23860136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier.
    Kasten P; Vogel J; Luginbühl R; Niemeyer P; Tonak M; Lorenz H; Helbig L; Weiss S; Fellenberg J; Leo A; Simank HG; Richter W
    Biomaterials; 2005 Oct; 26(29):5879-89. PubMed ID: 15913762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.
    Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M
    J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic composite scaffolds based mineralization of hydroxyapatite on electrospun calcium-containing poly(vinyl alcohol) nanofibers.
    Chang W; Mu X; Zhu X; Ma G; Li C; Xu F; Nie J
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4369-76. PubMed ID: 23910355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.