These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 26654982)

  • 1. Exome sequencing explained: a practical guide to its clinical application.
    Seaby EG; Pengelly RJ; Ennis S
    Brief Funct Genomics; 2016 Sep; 15(5):374-84. PubMed ID: 26654982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A practical guide to filtering and prioritizing genetic variants.
    Jalali Sefid Dashti M; Gamieldien J
    Biotechniques; 2017 Jan; 62(1):18-30. PubMed ID: 28118812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of Clinical Whole-Exome and Whole-Genome Sequencing for Detection of Germline Variants in Inherited Disease.
    Hegde M; Santani A; Mao R; Ferreira-Gonzalez A; Weck KE; Voelkerding KV
    Arch Pathol Lab Med; 2017 Jun; 141(6):798-805. PubMed ID: 28362156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opportunities and challenges of whole-genome and -exome sequencing.
    Petersen BS; Fredrich B; Hoeppner MP; Ellinghaus D; Franke A
    BMC Genet; 2017 Feb; 18(1):14. PubMed ID: 28193154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candidate gene discovery in autoimmunity by using extreme phenotypes, next generation sequencing and whole exome capture.
    Johar AS; Anaya JM; Andrews D; Patel HR; Field M; Goodnow C; Arcos-Burgos M
    Autoimmun Rev; 2015 Mar; 14(3):204-9. PubMed ID: 25447288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Next-generation sequencing using a pre-designed gene panel for the molecular diagnosis of congenital disorders in pediatric patients.
    Lim EC; Brett M; Lai AH; Lee SP; Tan ES; Jamuar SS; Ng IS; Tan EC
    Hum Genomics; 2015 Dec; 9():33. PubMed ID: 26666243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lake Louise mutation detection meeting 2013: clinical translation of next-generation sequencing requires optimization of workflows and interpretation of variants.
    Smith A; Boycott KM; Jarinova O
    Hum Mutat; 2014 Feb; 35(2):265-9. PubMed ID: 24282140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling.
    Zhang G; Wang J; Yang J; Li W; Deng Y; Li J; Huang J; Hu S; Zhang B
    BMC Genomics; 2015 Aug; 16(1):581. PubMed ID: 26242175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole exome and whole genome sequencing.
    Bick D; Dimmock D
    Curr Opin Pediatr; 2011 Dec; 23(6):594-600. PubMed ID: 21881504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of Exome Sequencing to Identify Rare Genetic Diseases.
    Udupa P; Ghosh DK
    Methods Mol Biol; 2024; 2719():79-98. PubMed ID: 37803113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrent exome-targeted next-generation sequencing and single nucleotide polymorphism array to identify the causative genetic aberrations of isolated Mayer-Rokitansky-Küster-Hauser syndrome.
    Chen MJ; Wei SY; Yang WS; Wu TT; Li HY; Ho HN; Yang YS; Chen PL
    Hum Reprod; 2015 Jul; 30(7):1732-42. PubMed ID: 25924657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replicate exome-sequencing in a multiple-generation family: improved interpretation of next-generation sequencing data.
    Cherukuri PF; Maduro V; Fuentes-Fajardo KV; Lam K; ; Adams DR; Tifft CJ; Mullikin JC; Gahl WA; Boerkoel CF
    BMC Genomics; 2015 Nov; 16():998. PubMed ID: 26602380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted 46-gene and clinical exome sequencing for mutations causing cardiomyopathies.
    Waldmüller S; Schroeder C; Sturm M; Scheffold T; Imbrich K; Junker S; Frische C; Hofbeck M; Bauer P; Bonin M; Gawaz M; Gramlich M
    Mol Cell Probes; 2015 Oct; 29(5):308-14. PubMed ID: 25979592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prioritization Of Nonsynonymous Single Nucleotide Variants For Exome Sequencing Studies Via Integrative Learning On Multiple Genomic Data.
    Wu M; Wu J; Chen T; Jiang R
    Sci Rep; 2015 Oct; 5():14955. PubMed ID: 26459872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and annotation of whole-genome or whole-exome sequencing-derived variants for clinical diagnosis.
    Worthey EA
    Curr Protoc Hum Genet; 2013 Oct; 79():9.24.1-9.24.24. PubMed ID: 24510652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automatic and efficient pipeline for disease gene identification through utilizing family-based sequencing data.
    Song D; Li N; Liao L
    Biomed Mater Eng; 2015; 26 Suppl 1():S1797-803. PubMed ID: 26405949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translating exome sequencing from research to clinical diagnostics.
    Coonrod EM; Margraf RL; Voelkerding KV
    Clin Chem Lab Med; 2011 Dec; 50(7):1161-8. PubMed ID: 22850020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Challenges in exome analysis by LifeScope and its alternative computational pipelines.
    Pranckevičiene E; Rančelis T; Pranculis A; Kučinskas V
    BMC Res Notes; 2015 Sep; 8():421. PubMed ID: 26346699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medical implications of technical accuracy in genome sequencing.
    Goldfeder RL; Priest JR; Zook JM; Grove ME; Waggott D; Wheeler MT; Salit M; Ashley EA
    Genome Med; 2016 Mar; 8(1):24. PubMed ID: 26932475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing.
    Hollegaard MV; Grauholm J; Nielsen R; Grove J; Mandrup S; Hougaard DM
    Mol Genet Metab; 2013; 110(1-2):65-72. PubMed ID: 23830478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.