BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26655178)

  • 1. Biofuel cell backpacked insect and its application to wireless sensing.
    Shoji K; Akiyama Y; Suzuki M; Nakamura N; Ohno H; Morishima K
    Biosens Bioelectron; 2016 Apr; 78():390-395. PubMed ID: 26655178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect biofuel cells using trehalose included in insect hemolymph leading to an insect-mountable biofuel cell.
    Shoji K; Akiyama Y; Suzuki M; Hoshino T; Nakamura N; Ohno H; Morishima K
    Biomed Microdevices; 2012 Dec; 14(6):1063-8. PubMed ID: 22955841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co
    Wang S; Zhang X; Huang J; Chen J
    Anal Bioanal Chem; 2018 Mar; 410(7):2019-2029. PubMed ID: 29392380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout.
    Pinyou P; Conzuelo F; Sliozberg K; Vivekananthan J; Contin A; Pöller S; Plumeré N; Schuhmann W
    Bioelectrochemistry; 2015 Dec; 106(Pt A):22-7. PubMed ID: 25892686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a (PQQ)-GDH-anode based on MWCNT-modified gold and its application in a glucose/O2-biofuel cell.
    Tanne C; Göbel G; Lisdat F
    Biosens Bioelectron; 2010 Oct; 26(2):530-5. PubMed ID: 20702080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications.
    Yan YM; Yehezkeli O; Willner I
    Chemistry; 2007; 13(36):10168-75. PubMed ID: 17937376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of high performance bioanode based on fruitful association of dendrimer and carbon nanotube used for design O2/glucose membrane-less biofuel cell with improved bilirubine oxidase biocathode.
    Korani A; Salimi A
    Biosens Bioelectron; 2013 Dec; 50():186-93. PubMed ID: 23850787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement.
    Babadi AA; Bagheri S; Hamid SB
    Biosens Bioelectron; 2016 May; 79():850-60. PubMed ID: 26785309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A promising dehydrogenase-based bioanode for a glucose biosensor and glucose/O2 biofuel cell.
    Saleh FS; Mao L; Ohsaka T
    Analyst; 2012 May; 137(9):2233-8. PubMed ID: 22416269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recoverable hybrid enzymatic biofuel cell with molecular oxygen-independence.
    Yu Y; Xu M; Bai L; Han L; Dong S
    Biosens Bioelectron; 2016 Jan; 75():23-7. PubMed ID: 26283586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O
    Giroud F; Sawada K; Taya M; Cosnier S
    Biosens Bioelectron; 2017 Jan; 87():957-963. PubMed ID: 27665518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocomposite based on reduced graphene oxide film modified with phenothiazone and flavin adenine dinucleotide-dependent glucose dehydrogenase for glucose sensing and biofuel cell applications.
    Ravenna Y; Xia L; Gun J; Mikhaylov AA; Medvedev AG; Lev O; Alfonta L
    Anal Chem; 2015 Oct; 87(19):9567-71. PubMed ID: 26334692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Microelectronic Sensor Device Powered by a Small Implantable Biofuel Cell.
    Bollella P; Lee I; Blaauw D; Katz E
    Chemphyschem; 2020 Jan; 21(1):120-128. PubMed ID: 31408568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly ordered mesoporous carbons-based glucose/O2 biofuel cell.
    Zhou M; Deng L; Wen D; Shang L; Jin L; Dong S
    Biosens Bioelectron; 2009 May; 24(9):2904-8. PubMed ID: 19321330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-powered glucose biosensing system.
    Slaughter G; Kulkarni T
    Biosens Bioelectron; 2016 Apr; 78():45-50. PubMed ID: 26594885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes.
    MacAodha D; Ó Conghaile P; Egan B; Kavanagh P; Leech D
    Chemphyschem; 2013 Jul; 14(10):2302-7. PubMed ID: 23788272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Enzymatic Glucose/O
    Gholami F; Navaee A; Salimi A; Ahmadi R; Korani A; Hallaj R
    Sci Rep; 2018 Oct; 8(1):15103. PubMed ID: 30305656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors.
    Zhou H; Zhang Z; Yu P; Su L; Ohsaka T; Mao L
    Langmuir; 2010 Apr; 26(8):6028-32. PubMed ID: 20121055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wireless transmission system powered by an enzyme biofuel cell implanted in an orange.
    MacVittie K; Conlon T; Katz E
    Bioelectrochemistry; 2015 Dec; 106(Pt A):28-33. PubMed ID: 25467135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An implantable biofuel cell for a live insect.
    Rasmussen M; Ritzmann RE; Lee I; Pollack AJ; Scherson D
    J Am Chem Soc; 2012 Jan; 134(3):1458-60. PubMed ID: 22239249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.