These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26655278)

  • 1. Heat dissipation by blood circulation and airway tissue heat absorption in a canine model of inhalational thermal injury.
    Wan J; Zhang G; Qiu Y; Wen C; Fu T
    Burns; 2016 May; 42(3):548-55. PubMed ID: 26655278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circulational heat dissipation of upper airway: Canine model of inhalational thermal injury.
    Zhao R; Di LN; Wen CQ; Ning FG; Zhang GA
    Burns; 2013 Sep; 39(6):1212-20. PubMed ID: 23523221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring surface temperature and grading pathological changes of airway tissue in a canine model of inhalational thermal injury.
    Zhao R; Di LN; Zhao XZ; Wang C; Zhang GA
    Burns; 2013 Jun; 39(4):767-75. PubMed ID: 23164648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mucosal fluid evaporation is not the method of heat dissipation from fourth-degree laryngopharyngeal burns.
    Wan JB; Zhang GA; Qiu YX; Wen CQ; Fu TR
    Sci Rep; 2016 Jun; 6():28772. PubMed ID: 27349685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature distribution in the upper airway after inhalation injury.
    Rong YH; Liu W; Wang C; Ning FG; Zhang GA
    Burns; 2011 Nov; 37(7):1187-91. PubMed ID: 21816541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protection of laryngeal mucosa and function in laryngeal burns by heat absorption of perilaryngeal tissue.
    Dou Z; Zhou X; Jiang H; Zhao X; Wen C; Zhang GA
    Eur Arch Otorhinolaryngol; 2023 Oct; 280(10):4531-4542. PubMed ID: 37219683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of excessive humidity.
    Williams RB
    Respir Care Clin N Am; 1998 Jun; 4(2):215-28. PubMed ID: 9648183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved preferential tumor hyperthermia with regional heating and systemic blood cooling: a balanced heat transfer method.
    Oleson JR; Babbs CF; Parks LC
    Radiat Res; 1984 Mar; 97(3):488-98. PubMed ID: 6729025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cold and warm dry air hyperventilation on canine airway blood flow.
    Baile EM; Dahlby RW; Wiggs BR; Parsons GH; Paré PD
    J Appl Physiol (1985); 1987 Feb; 62(2):526-32. PubMed ID: 3558212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longitudinal distribution of canine respiratory heat and water exchanges.
    Ray DW; Ingenito EP; Strek M; Schumacker PT; Solway J
    J Appl Physiol (1985); 1989 Jun; 66(6):2788-98. PubMed ID: 2745342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathological changes of the three clinical types of laryngeal burns based on a canine model.
    Cheng W; Ran Z; Wei L; La-na D; Xiao-zhuo Z; Yan-hua R; Fang-gang N; Guo-an Z
    Burns; 2014 Mar; 40(2):257-67. PubMed ID: 23891232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemic and local effects of heat dissipation in the thermally powered LVAS.
    Emoto H; Harasaki H; Fujimoto LK; Navarro RR; White M; Whalen R; Kiraly RJ; Nosé Y
    ASAIO Trans; 1988; 34(3):361-6. PubMed ID: 2461726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D numerical simulation of hot airflow in the human nasal cavity and trachea.
    Shamohammadi H; Mehrabi S; Sadrizadeh S; Yaghoubi M; Abouali O
    Comput Biol Med; 2022 Aug; 147():105702. PubMed ID: 35772328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of the Velocity and Temperature Distribution of Inhalation Thermal Injury in a Human Upper Airway Model by Application of Computational Fluid Dynamics.
    Chang Y; Zhao XZ; Wang C; Ning FG; Zhang GA
    J Burn Care Res; 2015; 36(4):500-8. PubMed ID: 25412055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing circulation to lower limbs during head-down tilt by warming upper body and thighs.
    Koscheyev VS; Leon GR; Coca A; List N
    Aviat Space Environ Med; 2004 Jul; 75(7):596-602. PubMed ID: 15267081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat from an implanted power source is mainly dissipated by blood perfusion.
    Okazaki Y; Davies CR; Matsuyoshi T; Fukamachi K; Wika KE; Harasaki H
    ASAIO J; 1997; 43(5):M585-8. PubMed ID: 9360112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air.
    Goodarzi-Ardakani V; Taeibi-Rahni M; Salimi MR; Ahmadi G
    Respir Physiol Neurobiol; 2016 Mar; 223():49-58. PubMed ID: 26777422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological factors in hyperthermia.
    Song CW
    Natl Cancer Inst Monogr; 1982 Jun; 61():169-76. PubMed ID: 7177175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.
    Taylor NA; Caldwell JN; Van den Heuvel AM; Patterson MJ
    Med Sci Sports Exerc; 2008 Nov; 40(11):1962-9. PubMed ID: 18845977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calorimetric measurement of postexercise net heat loss and residual body heat storage.
    Kenny GP; Webb P; Ducharme MB; Reardon FD; Jay O
    Med Sci Sports Exerc; 2008 Sep; 40(9):1629-36. PubMed ID: 18685528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.