These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Myeloperoxidase-derived oxidants damage artery wall proteins in an animal model of chronic kidney disease-accelerated atherosclerosis. Zeng L; Mathew AV; Byun J; Atkins KB; Brosius FC; Pennathur S J Biol Chem; 2018 May; 293(19):7238-7249. PubMed ID: 29581235 [TBL] [Abstract][Full Text] [Related]
4. Exploring the role of myeloperoxidase in the atherosclerotic process in hypoxic mice based on the MAPK signaling pathway. Zhang J; Han Y; Jia R; Zhu Q; Wang X; Liu M; Zhang W Biochem Pharmacol; 2024 Jul; 225():116275. PubMed ID: 38729447 [TBL] [Abstract][Full Text] [Related]
6. Deletion of angiotensin-converting enzyme 2 promotes the development of atherosclerosis and arterial neointima formation. Sahara M; Ikutomi M; Morita T; Minami Y; Nakajima T; Hirata Y; Nagai R; Sata M Cardiovasc Res; 2014 Feb; 101(2):236-46. PubMed ID: 24193738 [TBL] [Abstract][Full Text] [Related]
7. Endothelin-1 overexpression exacerbates atherosclerosis and induces aortic aneurysms in apolipoprotein E knockout mice. Li MW; Mian MO; Barhoumi T; Rehman A; Mann K; Paradis P; Schiffrin EL Arterioscler Thromb Vasc Biol; 2013 Oct; 33(10):2306-15. PubMed ID: 23887640 [TBL] [Abstract][Full Text] [Related]
8. Novel model of inflammatory neointima formation reveals a potential role of myeloperoxidase in neointimal hyperplasia. Yang J; Cheng Y; Ji R; Zhang C Am J Physiol Heart Circ Physiol; 2006 Dec; 291(6):H3087-93. PubMed ID: 16844918 [TBL] [Abstract][Full Text] [Related]
9. Nrf2 in bone marrow-derived cells positively contributes to the advanced stage of atherosclerotic plaque formation. Harada N; Ito K; Hosoya T; Mimura J; Maruyama A; Noguchi N; Yagami K; Morito N; Takahashi S; Maher JM; Yamamoto M; Itoh K Free Radic Biol Med; 2012 Dec; 53(12):2256-62. PubMed ID: 23051009 [TBL] [Abstract][Full Text] [Related]
10. Atheroprotective role of C5ar2 deficiency in apolipoprotein E-deficient mice. Selle J; Asare Y; Köhncke J; Alampour-Rajabi S; Shagdarsuren G; Klos A; Weber C; Jankowski J; Shagdarsuren E Thromb Haemost; 2015 Oct; 114(4):848-58. PubMed ID: 26084965 [TBL] [Abstract][Full Text] [Related]
11. Knockout of Adamts7, a novel coronary artery disease locus in humans, reduces atherosclerosis in mice. Bauer RC; Tohyama J; Cui J; Cheng L; Yang J; Zhang X; Ou K; Paschos GK; Zheng XL; Parmacek MS; Rader DJ; Reilly MP Circulation; 2015 Mar; 131(13):1202-1213. PubMed ID: 25712206 [TBL] [Abstract][Full Text] [Related]
16. Leptin promotes neointima formation and smooth muscle cell proliferation via NADPH oxidase activation and signalling in caveolin-rich microdomains. Schroeter MR; Leifheit-Nestler M; Hubert A; Schumann B; Glückermann R; Eschholz N; Krüger N; Lutz S; Hasenfuss G; Konstantinides S; Schäfer K Cardiovasc Res; 2013 Aug; 99(3):555-65. PubMed ID: 23723060 [TBL] [Abstract][Full Text] [Related]
17. Differential effects of chlorinated and oxidized phospholipids in vascular tissue: implications for neointima formation. Greig FH; Hutchison L; Spickett CM; Kennedy S Clin Sci (Lond); 2015 May; 128(9):579-92. PubMed ID: 25524654 [TBL] [Abstract][Full Text] [Related]
18. TSLPR deficiency attenuates atherosclerotic lesion development associated with the inhibition of TH17 cells and the promotion of regulator T cells in ApoE-deficient mice. Wu C; He S; Peng Y; Kushwaha KK; Lin J; Dong J; Wang B; Lin J; Shan S; Liu J; Huang K; Li D J Mol Cell Cardiol; 2014 Nov; 76():33-45. PubMed ID: 25117469 [TBL] [Abstract][Full Text] [Related]
19. Effects of a novel pharmacologic inhibitor of myeloperoxidase in a mouse atherosclerosis model. Liu C; Desikan R; Ying Z; Gushchina L; Kampfrath T; Deiuliis J; Wang A; Xu X; Zhong J; Rao X; Sun Q; Maiseyeu A; Parthasarathy S; Rajagopalan S PLoS One; 2012; 7(12):e50767. PubMed ID: 23251382 [TBL] [Abstract][Full Text] [Related]