These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26655598)

  • 21. Some processes of energy saving and expenditure occurring during ethanol perfusion in the isolated liver of fed rats; a Nuclear Magnetic Resonance study.
    Beauvieux MC; Couzigou P; Gin H; Canioni P; Gallis JL
    BMC Physiol; 2004 Mar; 4():3. PubMed ID: 15053831
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Balance of production and consumption of ATP in ammonium-starved Saccharomyces cerevisiae.
    Lagunas R; Ruiz E
    J Gen Microbiol; 1988 Sep; 134(9):2507-11. PubMed ID: 3076187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes.
    Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K
    Microb Cell Fact; 2015 Jun; 14():80. PubMed ID: 26063229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain.
    Vos T; de la Torre Cortés P; van Gulik WM; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2015 Sep; 14():133. PubMed ID: 26369953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy systems for ATP regeneration in cell-free protein synthesis reactions.
    Calhoun KA; Swartz JR
    Methods Mol Biol; 2007; 375():3-17. PubMed ID: 17634594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of Escherichia coli to improve recombinant protein production.
    Liu M; Feng X; Ding Y; Zhao G; Liu H; Xian M
    Appl Microbiol Biotechnol; 2015 Dec; 99(24):10367-77. PubMed ID: 26399416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Requirement of glycolytic and mitochondrial energy supply for loading of Ca(2+) stores and InsP(3)-mediated Ca(2+) signaling in rat hippocampus astrocytes.
    Kahlert S; Reiser G
    J Neurosci Res; 2000 Aug; 61(4):409-20. PubMed ID: 10931527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Harnessing transcription for bioproduction in cyanobacteria.
    Stensjö K; Vavitsas K; Tyystjärvi T
    Physiol Plant; 2018 Feb; 162(2):148-155. PubMed ID: 28762505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A molecular rheostat maintains ATP levels to drive a synthetic biochemistry system.
    Opgenorth PH; Korman TP; Iancu L; Bowie JU
    Nat Chem Biol; 2017 Sep; 13(9):938-942. PubMed ID: 28671683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. De Novo metabolic engineering and the promise of synthetic DNA.
    Klein-Marcuschamer D; Yadav VG; Ghaderi A; Stephanopoulos GN
    Adv Biochem Eng Biotechnol; 2010; 120():101-31. PubMed ID: 20186529
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimulation of acetoin production in metabolically engineered Lactococcus lactis by increasing ATP demand.
    Liu J; Kandasamy V; Würtz A; Jensen PR; Solem C
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9509-9517. PubMed ID: 27344595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Guanylyl cyclase is an ATP sensor coupling nitric oxide signaling to cell metabolism.
    Ruiz-Stewart I; Tiyyagura SR; Lin JE; Kazerounian S; Pitari GM; Schulz S; Martin E; Murad F; Waldman SA
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):37-42. PubMed ID: 14684830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering as a tool for enhanced lactic acid production.
    Upadhyaya BP; DeVeaux LC; Christopher LP
    Trends Biotechnol; 2014 Dec; 32(12):637-44. PubMed ID: 25457813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic regulation of ATP breakdown and of adenosine production in rat brain extracts.
    Barsotti C; Ipata PL
    Int J Biochem Cell Biol; 2004 Nov; 36(11):2214-25. PubMed ID: 15313467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction of a Genome-Scale Metabolic Model of Arthrospira platensis NIES-39 and Metabolic Design for Cyanobacterial Bioproduction.
    Yoshikawa K; Aikawa S; Kojima Y; Toya Y; Furusawa C; Kondo A; Shimizu H
    PLoS One; 2015; 10(12):e0144430. PubMed ID: 26640947
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent trends in metabolic engineering of microbial chemical factories.
    Liu Y; Nielsen J
    Curr Opin Biotechnol; 2019 Dec; 60():188-197. PubMed ID: 31185380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamics-based design of microbial cell factories for anaerobic product formation.
    Cueto-Rojas HF; van Maris AJ; Wahl SA; Heijnen JJ
    Trends Biotechnol; 2015 Sep; 33(9):534-46. PubMed ID: 26232033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Cellular energy metabolism: physiologic and pathologic aspects].
    Sztark F; Payen JF; Piriou V; Rigoulet M; Ventura-Clapier R; Mazat JP; Leverve X; Janvier G
    Ann Fr Anesth Reanim; 1999 Feb; 18(2):261-9. PubMed ID: 10207603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production.
    Gruchattka E; Kayser O
    PLoS One; 2015; 10(12):e0144981. PubMed ID: 26701782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on the control of energy metabolism in mammalian cardiac muscle cells in culture.
    Seraydarian MW
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():181-90. PubMed ID: 1215636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.