BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 26655600)

  • 1. Glycation alter the process of Tau phosphorylation to change Tau isoforms aggregation property.
    Liu K; Liu Y; Li L; Qin P; Iqbal J; Deng Y; Qing H
    Biochim Biophys Acta; 2016 Feb; 1862(2):192-201. PubMed ID: 26655600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3zeta protein.
    Sadik G; Tanaka T; Kato K; Yanagi K; Kudo T; Takeda M
    Biochem Biophys Res Commun; 2009 May; 383(1):37-41. PubMed ID: 19324008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Tau Proteoforms in Health and Disease.
    Waheed Z; Choudhary J; Jatala FH; Fatimah ; Noor A; Zerr I; Zafar S
    Mol Neurobiol; 2023 Sep; 60(9):5155-5166. PubMed ID: 37266762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posttranslational modifications of tau--role in human tauopathies and modeling in transgenic animals.
    Chen F; David D; Ferrari A; Götz J
    Curr Drug Targets; 2004 Aug; 5(6):503-15. PubMed ID: 15270197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transactive response DNA-binding protein 43 (TDP-43) regulates alternative splicing of tau exon 10: Implications for the pathogenesis of tauopathies.
    Gu J; Chen F; Iqbal K; Gong CX; Wang X; Liu F
    J Biol Chem; 2017 Jun; 292(25):10600-10612. PubMed ID: 28487370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy.
    Trzeciakiewicz H; Tseng JH; Wander CM; Madden V; Tripathy A; Yuan CX; Cohen TJ
    Sci Rep; 2017 Mar; 7():44102. PubMed ID: 28287136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three repeat isoforms of tau inhibit assembly of four repeat tau filaments.
    Adams SJ; DeTure MA; McBride M; Dickson DW; Petrucelli L
    PLoS One; 2010 May; 5(5):e10810. PubMed ID: 20520830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a sensitive ELISA for quantification of three- and four-repeat tau isoforms in tauopathies.
    Luk C; Giovannoni G; Williams DR; Lees AJ; de Silva R
    J Neurosci Methods; 2009 May; 180(1):34-42. PubMed ID: 19427527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro aggregation assays using hyperphosphorylated tau protein.
    Sui D; Liu M; Kuo MH
    J Vis Exp; 2015 Jan; (95):e51537. PubMed ID: 25590418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rat tau proteome consists of six tau isoforms: implication for animal models of human tauopathies.
    Hanes J; Zilka N; Bartkova M; Caletkova M; Dobrota D; Novak M
    J Neurochem; 2009 Mar; 108(5):1167-76. PubMed ID: 19141083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of Intracellular Tau Aggregation Regulated by OGA/OGT Inhibitors.
    Lim S; Haque MM; Nam G; Ryoo N; Rhim H; Kim YK
    Int J Mol Sci; 2015 Aug; 16(9):20212-24. PubMed ID: 26343633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and assessment of sensitive immuno-PCR assays for the quantification of cerebrospinal fluid three- and four-repeat tau isoforms in tauopathies.
    Luk C; Compta Y; Magdalinou N; Martí MJ; Hondhamuni G; Zetterberg H; Blennow K; Constantinescu R; Pijnenburg Y; Mollenhauer B; Trenkwalder C; Van Swieten J; Chiu WZ; Borroni B; Cámara A; Cheshire P; Williams DR; Lees AJ; de Silva R
    J Neurochem; 2012 Nov; 123(3):396-405. PubMed ID: 22862741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hsp70 alters tau function and aggregation in an isoform specific manner.
    Voss K; Combs B; Patterson KR; Binder LI; Gamblin TC
    Biochemistry; 2012 Jan; 51(4):888-98. PubMed ID: 22236337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tau isoform composition influences rate and extent of filament formation.
    Zhong Q; Congdon EE; Nagaraja HN; Kuret J
    J Biol Chem; 2012 Jun; 287(24):20711-9. PubMed ID: 22539343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Argyrophilic grain disease differs from other tauopathies by lacking tau acetylation.
    Grinberg LT; Wang X; Wang C; Sohn PD; Theofilas P; Sidhu M; Arevalo JB; Heinsen H; Huang EJ; Rosen H; Miller BL; Gan L; Seeley WW
    Acta Neuropathol; 2013 Apr; 125(4):581-93. PubMed ID: 23371364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tau and tauopathies.
    Lee G; Leugers CJ
    Prog Mol Biol Transl Sci; 2012; 107():263-93. PubMed ID: 22482453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-Expression of Three Wild-Type 3R-Tau Isoforms Induces Memory Deficit via Oxidation-Related DNA Damage and Cell Death: A Promising Model for Tauopathies.
    Xu C; Guo J; Li L; Wang X; Zhou Q; Sun D; Zhang S; Li S; Ye J; Liu Y; Liu E; Zeng P; Wang X; Yang Y; Wang JZ
    J Alzheimers Dis; 2020; 73(3):1105-1123. PubMed ID: 31884489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further understanding of tau phosphorylation: implications for therapy.
    Medina M; Avila J
    Expert Rev Neurother; 2015 Jan; 15(1):115-22. PubMed ID: 25555397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth arrest specific protein 7 inhibits tau fibrillogenesis.
    Shimizu T; Hirose K; Uchida C; Uchida T
    Biochem Biophys Res Commun; 2020 May; 526(2):281-286. PubMed ID: 32216967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The beta-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy.
    Eckermann K; Mocanu MM; Khlistunova I; Biernat J; Nissen A; Hofmann A; Schönig K; Bujard H; Haemisch A; Mandelkow E; Zhou L; Rune G; Mandelkow EM
    J Biol Chem; 2007 Oct; 282(43):31755-65. PubMed ID: 17716969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.