These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 26655688)
1. High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing. Shi M; Ling K; Yong KW; Li Y; Feng S; Zhang X; Pingguan-Murphy B; Lu TJ; Xu F Sci Rep; 2015 Dec; 5():17928. PubMed ID: 26655688 [TBL] [Abstract][Full Text] [Related]
2. Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes. Jiao A; Han X; Critser JK; Ma H Cryobiology; 2006 Jun; 52(3):386-92. PubMed ID: 16616118 [TBL] [Abstract][Full Text] [Related]
3. Droplet Generation, Vitrification, and Warming for Cell Cryopreservation: A Review. Cui M; Zhan T; Yang J; Dang H; Yang G; Han H; Liu L; Xu Y ACS Biomater Sci Eng; 2023 Mar; 9(3):1151-1163. PubMed ID: 36744931 [TBL] [Abstract][Full Text] [Related]
4. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates. Santos MV; Sansinena M; Zaritzky N; Chirife J Cryo Letters; 2012; 33(1):31-40. PubMed ID: 22434120 [TBL] [Abstract][Full Text] [Related]
5. Numerical simulation of cooling rates in vitrification systems used for oocyte cryopreservation. Sansinena M; Santos MV; Zaritzky N; Chirife J Cryobiology; 2011 Aug; 63(1):32-7. PubMed ID: 21540134 [TBL] [Abstract][Full Text] [Related]
6. Lower intracellular concentration of cryoprotectants after vitrification than after slow freezing despite exposure to higher concentration of cryoprotectant solutions. Vanderzwalmen P; Connan D; Grobet L; Wirleitner B; Remy B; Vanderzwalmen S; Zech N; Ectors FJ Hum Reprod; 2013 Aug; 28(8):2101-10. PubMed ID: 23592220 [TBL] [Abstract][Full Text] [Related]
7. Blastocyst transfer after aseptic vitrification of zygotes: an approach to overcome an impaired uterine environment. Vanderzwalmen P; Zech NH; Ectors F; Stecher A; Lejeune B; Vanderzwalmen S; Wirleitner B Reprod Biomed Online; 2012 Dec; 25(6):591-9. PubMed ID: 23069744 [TBL] [Abstract][Full Text] [Related]
8. Vitrification of oocytes, embryos and blastocysts. Mukaida T; Oka C Best Pract Res Clin Obstet Gynaecol; 2012 Dec; 26(6):789-803. PubMed ID: 22940094 [TBL] [Abstract][Full Text] [Related]
9. A study on the relationship between the crystallization characteristics of quenched droplets and the effect of cell cryopreservation with Raman spectroscopy. Zhan T; Niu W; Cui M; Han H; Dang H; Guo N; Wang D; Hao Y; Zang C; Xu Y; Guo H Analyst; 2023 Jul; 148(14):3312-3320. PubMed ID: 37337775 [TBL] [Abstract][Full Text] [Related]
10. Measurement of cooling and warming rates in vitrification-based plant cryopreservation protocols. Teixeira AS; González-Benito ME; Molina-García AD Biotechnol Prog; 2014; 30(5):1177-84. PubMed ID: 24933257 [TBL] [Abstract][Full Text] [Related]
11. Bulk Droplet Vitrification for Primary Hepatocyte Preservation. de Vries RJ; Banik PD; Nagpal S; Weng L; Ozer S; van Gulik TM; Toner M; Tessier SN; Uygun K J Vis Exp; 2019 Oct; (152):. PubMed ID: 31710044 [TBL] [Abstract][Full Text] [Related]
12. Numerical investigation into thermal effects of pre-cooling zone in vitrification-based cryopreservation process. Tsai HH; Tsai CH; Wu WT; Chen FZ; Chiang PJ Cryobiology; 2015 Feb; 70(1):32-7. PubMed ID: 25481669 [TBL] [Abstract][Full Text] [Related]
13. Optimization of cryopreservation of stem cells cultured as neurospheres: comparison between vitrification, slow-cooling and rapid cooling freezing protocols. Tan FC; Lee KH; Gouk SS; Magalhaes R; Poonepalli A; Hande MP; Dawe GS; Kuleshova LL Cryo Letters; 2007; 28(6):445-60. PubMed ID: 18183325 [TBL] [Abstract][Full Text] [Related]
15. Embryo vitrification using a novel semi-automated closed system yields in vitro outcomes equivalent to the manual Cryotop method. Roy TK; Brandi S; Tappe NM; Bradley CK; Vom E; Henderson C; Lewis C; Battista K; Hobbs B; Hobbs S; Syer J; Lanyon SR; Dopheide SM; Peura TT; McArthur SJ; Bowman MC; Stojanov T Hum Reprod; 2014 Nov; 29(11):2431-8. PubMed ID: 25164022 [TBL] [Abstract][Full Text] [Related]
16. Cryoprotectant-free cryopreservation of mammalian cells by superflash freezing. Akiyama Y; Shinose M; Watanabe H; Yamada S; Kanda Y Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7738-7743. PubMed ID: 30936320 [TBL] [Abstract][Full Text] [Related]
17. Principles of cryopreservation. Pegg DE Methods Mol Biol; 2015; 1257():3-19. PubMed ID: 25428001 [TBL] [Abstract][Full Text] [Related]
18. Embryo cryopreservation in the presence of low concentration of vitrification solution with sealed pulled straws in liquid nitrogen slush. Yavin S; Aroyo A; Roth Z; Arav A Hum Reprod; 2009 Apr; 24(4):797-804. PubMed ID: 19141483 [TBL] [Abstract][Full Text] [Related]
19. Investigations on the heat transport capability of a cryogenic oscillating heat pipe and its application in achieving ultra-fast cooling rates for cell vitrification cryopreservation. Han X; Ma H; Jiao A; Critser JK Cryobiology; 2008 Jun; 56(3):195-203. PubMed ID: 18430413 [TBL] [Abstract][Full Text] [Related]
20. Numerical analysis to determine the performance of different oocyte vitrification devices for cryopreservation. Li W; Zhou X; Wang H; Liu B Cryo Letters; 2012; 33(2):144-50. PubMed ID: 22576118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]