These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26655766)

  • 1. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface.
    Sachs NA; Ruiz-Torres R; Perreault EJ; Miller LE
    J Neural Eng; 2016 Feb; 13(1):016009. PubMed ID: 26655766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long term, stable brain machine interface performance using local field potentials and multiunit spikes.
    Flint RD; Wright ZA; Scheid MR; Slutzky MW
    J Neural Eng; 2013 Oct; 10(5):056005. PubMed ID: 23918061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):468-77. PubMed ID: 22772374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing BCI communication rates with dynamic stopping towards more practical use: an ALS study.
    Mainsah BO; Collins LM; Colwell KA; Sellers EW; Ryan DB; Caves K; Throckmorton CS
    J Neural Eng; 2015 Feb; 12(1):016013. PubMed ID: 25588137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combination strategy based brain-computer interface for two-dimensional movement control.
    Xia B; Maysam O; Veser S; Cao L; Li J; Jia J; Xie H; Birbaumer N
    J Neural Eng; 2015 Aug; 12(4):046021. PubMed ID: 26083480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved prediction of bimanual movements by a two-staged (effector-then-trajectory) decoder with epidural ECoG in nonhuman primates.
    Choi H; Lee J; Park J; Lee S; Ahn KH; Kim IY; Lee KM; Jang DP
    J Neural Eng; 2018 Feb; 15(1):016011. PubMed ID: 28875947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces.
    Schroeder KE; Perkins SM; Wang Q; Churchland MM
    J Neurosci; 2022 Jan; 42(2):220-239. PubMed ID: 34716229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significant improvement in one-dimensional cursor control using Laplacian electroencephalography over electroencephalography.
    Boudria Y; Feltane A; Besio W
    J Neural Eng; 2014 Jun; 11(3):035014. PubMed ID: 24836436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters.
    Marathe AR; Taylor DM
    J Neural Eng; 2013 Jun; 10(3):036015. PubMed ID: 23611833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface.
    Nason SR; Mender MJ; Vaskov AK; Willsey MS; Ganesh Kumar N; Kung TA; Patil PG; Chestek CA
    Neuron; 2021 Oct; 109(19):3164-3177.e8. PubMed ID: 34499856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving zero-training brain-computer interfaces by mixing model estimators.
    Verhoeven T; Hübner D; Tangermann M; Müller KR; Dambre J; Kindermans PJ
    J Neural Eng; 2017 Jun; 14(3):036021. PubMed ID: 28287076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance sustaining intracortical neural prostheses.
    Nuyujukian P; Kao JC; Fan JM; Stavisky SD; Ryu SI; Shenoy KV
    J Neural Eng; 2014 Dec; 11(6):066003. PubMed ID: 25307561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhesus monkeys learn to control a directional-key inspired brain machine interface via bio-feedback.
    Zhang C; Wang H; Tang S; Li Z
    PLoS One; 2024; 19(1):e0286742. PubMed ID: 38232123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.
    Revechkis B; Aflalo TN; Kellis S; Pouratian N; Andersen RA
    J Neural Eng; 2014 Dec; 11(6):066014. PubMed ID: 25394419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal-independent noise in intracortical brain-computer interfaces causes movement time properties inconsistent with Fitts' law.
    Willett FR; Murphy BA; Memberg WD; Blabe CH; Pandarinath C; Walter BL; Sweet JA; Miller JP; Henderson JM; Shenoy KV; Hochberg LR; Kirsch RF; Ajiboye AB
    J Neural Eng; 2017 Apr; 14(2):026010. PubMed ID: 28177925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shared Prosthetic Control Based on Multiple Movement Intent Decoders.
    Dantas H; Hansen TC; Warren DJ; Mathews VJ
    IEEE Trans Biomed Eng; 2021 May; 68(5):1547-1556. PubMed ID: 33326374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-computer interface control along instructed paths.
    Sadtler PT; Ryu SI; Tyler-Kabara EC; Yu BM; Batista AP
    J Neural Eng; 2015 Feb; 12(1):016015. PubMed ID: 25605498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.