BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 26655772)

  • 1. Experimental Evolution under Fluctuating Thermal Conditions Does Not Reproduce Patterns of Adaptive Clinal Differentiation in Drosophila melanogaster.
    Kellermann V; Hoffmann AA; Kristensen TN; Moghadam NN; Loeschcke V
    Am Nat; 2015 Nov; 186(5):582-93. PubMed ID: 26655772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia.
    Hoffmann AA; Weeks AR
    Genetica; 2007 Feb; 129(2):133-47. PubMed ID: 16955331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of developmental temperature on the genetic architecture underlying size and thermal clines in Drosophila melanogaster and D. simulans from the east coast of Australia.
    van Heerwaarden B; Sgrò CM
    Evolution; 2011 Apr; 65(4):1048-67. PubMed ID: 21091469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Drosophila laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future.
    Schou MF; Kristensen TN; Kellermann V; Schlötterer C; Loeschcke V
    J Evol Biol; 2014 Sep; 27(9):1859-68. PubMed ID: 24925446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex patterns of local adaptation in heat tolerance in Drosophila simulans from eastern Australia.
    van Heerwaarden B; Lee RF; Wegener B; Weeks AR; Sgró CM
    J Evol Biol; 2012 Sep; 25(9):1765-78. PubMed ID: 22775577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postponed reproduction as an adaptation to winter conditions in Drosophila melanogaster: evidence for clinal variation under semi-natural conditions.
    Mitrovski P; Hoffmann AA
    Proc Biol Sci; 2001 Oct; 268(1481):2163-8. PubMed ID: 11600081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: quantitative traits to transcripts.
    Clemson AS; Sgrò CM; Telonis-Scott M
    J Evol Biol; 2016 Dec; 29(12):2447-2463. PubMed ID: 27542565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Keeping your options open: Maintenance of thermal plasticity during adaptation to a stable environment.
    Fragata I; Lopes-Cunha M; Bárbaro M; Kellen B; Lima M; Faria GS; Seabra SG; Santos M; Simões P; Matos M
    Evolution; 2016 Jan; 70(1):195-206. PubMed ID: 26626438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multivariate test of evolutionary constraints for thermal tolerance in Drosophila melanogaster.
    Williams BR; VAN Heerwaarden B; Dowling DK; Sgrò CM
    J Evol Biol; 2012 Jul; 25(7):1415-26. PubMed ID: 22587877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline.
    Rako L; Blacket MJ; McKechnie SW; Hoffmann AA
    Mol Ecol; 2007 Jul; 16(14):2948-57. PubMed ID: 17614909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Support That Natural Selection Has Shaped the Latitudinal Distribution of Mitochondrial Haplotypes in Australian Drosophila melanogaster.
    Camus MF; Wolff JN; Sgrò CM; Dowling DK
    Mol Biol Evol; 2017 Oct; 34(10):2600-2612. PubMed ID: 28637217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel trait adaptation across opposing thermal environments in experimental Drosophila melanogaster populations.
    Tobler R; Hermisson J; Schlötterer C
    Evolution; 2015 Jul; 69(7):1745-59. PubMed ID: 26080903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three selections are better than one: clinal variation of thermal QTL from independent selection experiments in Drosophila.
    Rand DM; Weinreich DM; Lerman D; Folk D; Gilchrist GW
    Evolution; 2010 Oct; 64(10):2921-34. PubMed ID: 20497214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological climatic limits in Drosophila: patterns and implications.
    Hoffmann AA
    J Exp Biol; 2010 Mar; 213(6):870-80. PubMed ID: 20190112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel clinal variation in the mid-day siesta of Drosophila melanogaster implicates continent-specific targets of natural selection.
    Yang Y; Edery I
    PLoS Genet; 2018 Sep; 14(9):e1007612. PubMed ID: 30180162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel gene expression evolution in natural and laboratory evolved populations.
    Hsu SK; Belmouaden C; Nolte V; Schlötterer C
    Mol Ecol; 2021 Feb; 30(4):884-894. PubMed ID: 32979867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments.
    Manenti T; Loeschcke V; Moghadam NN; Sørensen JG
    J Evol Biol; 2015 Nov; 28(11):2078-87. PubMed ID: 26299271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in thermal performance and reaction norms among populations of Drosophila melanogaster.
    Klepsatel P; Gáliková M; De Maio N; Huber CD; Schlötterer C; Flatt T
    Evolution; 2013 Dec; 67(12):3573-87. PubMed ID: 24299409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental acclimation affects clinal variation in stress resistance traits in Drosophila buzzatii.
    Sarup P; Loeschcke V
    J Evol Biol; 2010 May; 23(5):957-65. PubMed ID: 20298441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.