These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 26655819)

  • 1. Role of DSCAM in the development of the spinal locomotor and sensorimotor circuits.
    Thiry L; Lemieux M; D Laflamme O; Bretzner F
    J Neurophysiol; 2016 Mar; 115(3):1338-54. PubMed ID: 26655819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental role of DSCAM in spinal locomotor circuits.
    Farah C
    J Neurophysiol; 2017 Jun; 117(6):2137-2139. PubMed ID: 28202568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of DSCAM in the Development of Neural Control of Movement and Locomotion.
    Lemieux M; Thiry L; Laflamme OD; Bretzner F
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
    Shevtsova NA; Rybak IA
    J Physiol; 2016 Nov; 594(21):6117-6131. PubMed ID: 27292055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age- and speed-dependent modulation of gaits in DSCAM
    Thiry L; Lemieux M; Bretzner F
    J Neurophysiol; 2018 Feb; 119(2):723-737. PubMed ID: 29093169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.
    Lemieux M; Laflamme OD; Thiry L; Boulanger-Piette A; Frenette J; Bretzner F
    J Neurophysiol; 2016 Mar; 115(3):1355-71. PubMed ID: 26683069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing diversity within subpopulations of locomotor-related V0 interneurons.
    Griener A; Zhang W; Kao H; Wagner C; Gosgnach S
    Dev Neurobiol; 2015 Nov; 75(11):1189-203. PubMed ID: 25649879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons.
    Dougherty KJ; Zagoraiou L; Satoh D; Rozani I; Doobar S; Arber S; Jessell TM; Kiehn O
    Neuron; 2013 Nov; 80(4):920-33. PubMed ID: 24267650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling.
    Shevtsova NA; Talpalar AE; Markin SN; Harris-Warrick RM; Kiehn O; Rybak IA
    J Physiol; 2015 Jun; 593(11):2403-26. PubMed ID: 25820677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord.
    Pujala A; Blivis D; O'Donovan MJ
    eNeuro; 2016; 3(3):. PubMed ID: 27419215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Dmrt3-Derived Neurons Suggest a Role within Locomotor Circuits.
    Perry S; Larhammar M; Vieillard J; Nagaraja C; Hilscher MM; Tafreshiha A; Rofo F; Caixeta FV; Kullander K
    J Neurosci; 2019 Mar; 39(10):1771-1782. PubMed ID: 30578339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord.
    Crone SA; Quinlan KA; Zagoraiou L; Droho S; Restrepo CE; Lundfald L; Endo T; Setlak J; Jessell TM; Kiehn O; Sharma K
    Neuron; 2008 Oct; 60(1):70-83. PubMed ID: 18940589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.
    Gosgnach S; Bikoff JB; Dougherty KJ; El Manira A; Lanuza GM; Zhang Y
    J Neurosci; 2017 Nov; 37(45):10835-10841. PubMed ID: 29118212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomical and electrophysiological characterization of a population of dI6 interneurons in the neonatal mouse spinal cord.
    Griener A; Zhang W; Kao H; Haque F; Gosgnach S
    Neuroscience; 2017 Oct; 362():47-59. PubMed ID: 28844009
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Haque F; Rancic V; Zhang W; Clugston R; Ballanyi K; Gosgnach S
    J Neurosci; 2018 Jun; 38(25):5666-5676. PubMed ID: 29789381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dorsally derived spinal interneurons in locomotor circuits.
    Vallstedt A; Kullander K
    Ann N Y Acad Sci; 2013 Mar; 1279():32-42. PubMed ID: 23531000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds.
    Danner SM; Wilshin SD; Shevtsova NA; Rybak IA
    J Physiol; 2016 Dec; 594(23):6947-6967. PubMed ID: 27633893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taking a Big Step towards Understanding Locomotion.
    Wyart C
    Trends Neurosci; 2018 Dec; 41(12):869-870. PubMed ID: 30471663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin and circuitry of spinal locomotor interneurons generating different speeds.
    Boije H; Kullander K
    Curr Opin Neurobiol; 2018 Dec; 53():16-21. PubMed ID: 29733915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.