These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 26656013)
1. Application of an autoregressive integrated moving average model for predicting injury mortality in Xiamen, China. Lin Y; Chen M; Chen G; Wu X; Lin T BMJ Open; 2015 Dec; 5(12):e008491. PubMed ID: 26656013 [TBL] [Abstract][Full Text] [Related]
2. [Autoregressive integrated moving average model in predicting road traffic injury in China]. Pang YY; Zhang XJ; Tu ZB; Cui MJ; Gu Y Zhonghua Liu Xing Bing Xue Za Zhi; 2013 Jul; 34(7):736-9. PubMed ID: 24257181 [TBL] [Abstract][Full Text] [Related]
3. [Application of multiple seasonal autoregressive integrated moving average model in predicting the mumps incidence]. Hui S; Chen L; Liu F; Ouyang Y Zhonghua Yu Fang Yi Xue Za Zhi; 2015 Dec; 49(12):1042-6. PubMed ID: 26887296 [TBL] [Abstract][Full Text] [Related]
4. Time-series analysis on human brucellosis during 2004-2013 in Shandong Province, China. Yang L; Bi ZW; Kou ZQ; Li XJ; Zhang M; Wang M; Zhang LY; Zhao ZT Zoonoses Public Health; 2015 May; 62(3):228-35. PubMed ID: 25043064 [TBL] [Abstract][Full Text] [Related]
5. Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. Liu Q; Liu X; Jiang B; Yang W BMC Infect Dis; 2011 Aug; 11():218. PubMed ID: 21838933 [TBL] [Abstract][Full Text] [Related]
6. Early Warning and Prediction of Scarlet Fever in China Using the Baidu Search Index and Autoregressive Integrated Moving Average With Explanatory Variable (ARIMAX) Model: Time Series Analysis. Luo T; Zhou J; Yang J; Xie Y; Wei Y; Mai H; Lu D; Yang Y; Cui P; Ye L; Liang H; Huang J J Med Internet Res; 2023 Oct; 25():e49400. PubMed ID: 37902815 [TBL] [Abstract][Full Text] [Related]
7. [Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model]. Ke-Wei W; Yu W; Jin-Ping L; Yu-Yu J Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2016 Jul; 28(6):630-634. PubMed ID: 29469251 [TBL] [Abstract][Full Text] [Related]
8. Application of seasonal auto-regressive integrated moving average model in forecasting the incidence of hand-foot-mouth disease in Wuhan, China. Peng Y; Yu B; Wang P; Kong DG; Chen BH; Yang XB J Huazhong Univ Sci Technolog Med Sci; 2017 Dec; 37(6):842-848. PubMed ID: 29270741 [TBL] [Abstract][Full Text] [Related]
9. [Establishing and applying of autoregressive integrated moving average model to predict the incidence rate of dysentery in Shanghai]. Li J; Wu HY; Li YT; Jin HM; Gu BK; Yuan ZA Zhonghua Yu Fang Yi Xue Za Zhi; 2010 Jan; 44(1):48-53. PubMed ID: 20388364 [TBL] [Abstract][Full Text] [Related]
10. Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model. Zhang X; Pang Y; Cui M; Stallones L; Xiang H Ann Epidemiol; 2015 Feb; 25(2):101-6. PubMed ID: 25467006 [TBL] [Abstract][Full Text] [Related]
11. Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China. Wei W; Jiang J; Liang H; Gao L; Liang B; Huang J; Zang N; Liao Y; Yu J; Lai J; Qin F; Su J; Ye L; Chen H PLoS One; 2016; 11(6):e0156768. PubMed ID: 27258555 [TBL] [Abstract][Full Text] [Related]
12. [Applications of multiple seasonal autoregressive integrated moving average (ARIMA) model on predictive incidence of tuberculosis]. Yi J; Du CT; Wang RH; Liu L Zhonghua Yu Fang Yi Xue Za Zhi; 2007 Mar; 41(2):118-21. PubMed ID: 17605238 [TBL] [Abstract][Full Text] [Related]
13. [Study on the ARIMA model application to predict echinococcosis cases in China]. En-Li T; Zheng-Feng W; Wen-Ce Z; Shi-Zhu L; Yan L; Lin A; Yu-Chun C; Xue-Jiao T; Shun-Xian Z; Zhi-Sheng D; Chun-Li Y; Jia-Xu C; Wei H; Xiao-Nong Z; Li-Guang T Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2018 Feb; 30(1):47-53. PubMed ID: 29536707 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China. Wu W; Guo J; An S; Guan P; Ren Y; Xia L; Zhou B PLoS One; 2015; 10(8):e0135492. PubMed ID: 26270814 [TBL] [Abstract][Full Text] [Related]
15. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study. Wang YW; Shen ZZ; Jiang Y BMJ Open; 2019 Jun; 9(6):e025773. PubMed ID: 31209084 [TBL] [Abstract][Full Text] [Related]
16. [Application of ARIMA model in predicting the incidence of tuberculosis in China from 2018 to 2019]. Yan CQ; Wang RB; Liu HC; Jiang Y; Li MC; Yin SP; Xiao TY; Wan KL; Rang WQ Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Jun; 40(6):633-637. PubMed ID: 31238610 [No Abstract] [Full Text] [Related]
17. [Application of ARIMA model to predict number of malaria cases in China]. Hui-Yu H; Hua-Qin S; Shun-Xian Z; Lin AI; Yan LU; Yu-Chun C; Shi-Zhu LI; Xue-Jiao T; Chun-Li Y; Wei HU; Jia-Xu C Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2017 Aug; 29(4):436-440. PubMed ID: 29508575 [TBL] [Abstract][Full Text] [Related]
18. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China. Liao Z; Zhang X; Zhang Y; Peng D Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907 [TBL] [Abstract][Full Text] [Related]
19. The Use of an Autoregressive Integrated Moving Average Model for Prediction of the Incidence of Dysentery in Jiangsu, China. Wang K; Song W; Li J; Lu W; Yu J; Han X Asia Pac J Public Health; 2016 May; 28(4):336-46. PubMed ID: 27106828 [TBL] [Abstract][Full Text] [Related]
20. [Study on the feasibility for ARIMA model application to predict malaria incidence in an unstable malaria area]. Zhu JM; Tang LH; Zhou SS; Huang F Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2007 Jun; 25(3):232-6. PubMed ID: 18038786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]