BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

607 related articles for article (PubMed ID: 26656394)

  • 1. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria.
    Ebbensgaard A; Mordhorst H; Overgaard MT; Nielsen CG; Aarestrup FM; Hansen EB
    PLoS One; 2015; 10(12):e0144611. PubMed ID: 26656394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissection of the antimicrobial and hemolytic activity of Cap18: Generation of Cap18 derivatives with enhanced specificity.
    Ebbensgaard A; Mordhorst H; Overgaard MT; Aarestrup FM; Hansen EB
    PLoS One; 2018; 13(5):e0197742. PubMed ID: 29852015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties.
    Han HM; Gopal R; Park Y
    Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Outer Membrane Proteins and Lipopolysaccharides for the Sensitivity of
    Ebbensgaard A; Mordhorst H; Aarestrup FM; Hansen EB
    Front Microbiol; 2018; 9():2153. PubMed ID: 30245684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial activity of rabbit CAP18-derived peptides.
    Larrick JW; Hirata M; Shimomoura Y; Yoshida M; Zheng H; Zhong J; Wright SC
    Antimicrob Agents Chemother; 1993 Dec; 37(12):2534-9. PubMed ID: 8109914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Synthesis of Lipopolysaccharide-Binding Antimicrobial Peptides Based on Truncated Rabbit and Human CAP18 Peptides and Evaluation of Their Action Mechanism.
    Madanchi H; Ebrahimi Kiasari R; Seyed Mousavi SJ; Johari B; Shabani AA; Sardari S
    Probiotics Antimicrob Proteins; 2020 Dec; 12(4):1582-1593. PubMed ID: 32445120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes.
    Schmitt P; Rosa RD; Destoumieux-Garzón D
    Biochim Biophys Acta; 2016 May; 1858(5):958-70. PubMed ID: 26498397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components.
    Savini F; Loffredo MR; Troiano C; Bobone S; Malanovic N; Eichmann TO; Caprio L; Canale VC; Park Y; Mangoni ML; Stella L
    Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183291. PubMed ID: 32234322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR Structures and Interactions of Antimicrobial Peptides with Lipopolysaccharide: Connecting Structures to Functions.
    Bhattacharjya S
    Curr Top Med Chem; 2016; 16(1):4-15. PubMed ID: 26139110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of positively charged residues on the polar and non-polar faces of amphipathic α-helical antimicrobial peptides on specificity and selectivity for Gram-negative pathogens.
    Jiang Z; Mant CT; Vasil M; Hodges RS
    Chem Biol Drug Des; 2018 Jan; 91(1):75-92. PubMed ID: 28636788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens.
    Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS
    J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resurrecting inactive antimicrobial peptides from the lipopolysaccharide trap.
    Mohanram H; Bhattacharjya S
    Antimicrob Agents Chemother; 2014; 58(4):1987-96. PubMed ID: 24419338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of β-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance.
    Su Y; Waring AJ; Ruchala P; Hong M
    Biochemistry; 2011 Mar; 50(12):2072-83. PubMed ID: 21302955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological and structural effects of the conjugation of an antimicrobial decapeptide with saturated, unsaturated, methoxylated and branched fatty acids.
    Húmpola MV; Rey MC; Carballeira NM; Simonetta AC; Tonarelli GG
    J Pept Sci; 2017 Jan; 23(1):45-55. PubMed ID: 28025839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt-resistant short antimicrobial peptides.
    Mohanram H; Bhattacharjya S
    Biopolymers; 2016 May; 106(3):345-56. PubMed ID: 26849911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial peptides from the Brazilian frog Phyllomedusa distincta.
    Batista CV; da Silva LR; Sebben A; Scaloni A; Ferrara L; Paiva GR; Olamendi-Portugal T; Possani LD; Bloch C
    Peptides; 1999; 20(6):679-86. PubMed ID: 10477123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of bactericidal efficiency, cell selectivity, and mechanism of short interspecific hybrid peptides.
    Dong N; Li XR; Xu XY; Lv YF; Li ZY; Shan AS; Wang JL
    Amino Acids; 2018 Apr; 50(3-4):453-468. PubMed ID: 29282543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rabbit CAP18 derived peptides inhibit gram negative and gram positive bacteria.
    Larrick JW; Hirata M; Shimomoura Y; Yoshida M; Zheng H; Zhong J; Wright SC
    Prog Clin Biol Res; 1994; 388():125-35. PubMed ID: 7831354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.
    Nuri R; Shprung T; Shai Y
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3089-100. PubMed ID: 26051126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides.
    Tam JP; Lu YA; Yang JL; Chiu KW
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):8913-8. PubMed ID: 10430870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.