These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26656482)

  • 1. Dipole-allowed direct band gap silicon superlattices.
    Oh YJ; Lee IH; Kim S; Lee J; Chang KJ
    Sci Rep; 2015 Dec; 5():18086. PubMed ID: 26656482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Si3AlP: a new promising material for solar cell absorber.
    Yang JH; Zhai Y; Liu H; Xiang H; Gong X; Wei SH
    J Am Chem Soc; 2012 Aug; 134(30):12653-7. PubMed ID: 22769022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Silicon Phase with Direct Band Gap and Novel Optoelectronic Properties.
    Guo Y; Wang Q; Kawazoe Y; Jena P
    Sci Rep; 2015 Sep; 5():14342. PubMed ID: 26395926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two novel silicon phases with direct band gaps.
    Fan Q; Chai C; Wei Q; Yang Y
    Phys Chem Chem Phys; 2016 May; 18(18):12905-13. PubMed ID: 27104737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic design of strong direct-gap optical transition in Si/Ge core/multishell nanowires.
    Zhang L; d'Avezac M; Luo JW; Zunger A
    Nano Lett; 2012 Feb; 12(2):984-91. PubMed ID: 22216831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput calculation screening for new silicon allotropes with monoclinic symmetry.
    Fan Q; Wu J; Zhao Y; Song Y; Yun S
    IUCrJ; 2023 Jul; 10(Pt 4):464-474. PubMed ID: 37335767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors.
    d'Avezac M; Luo JW; Chanier T; Zunger A
    Phys Rev Lett; 2012 Jan; 108(2):027401. PubMed ID: 22324706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards direct-gap silicon phases by the inverse band structure design approach.
    Xiang HJ; Huang B; Kan E; Wei SH; Gong XG
    Phys Rev Lett; 2013 Mar; 110(11):118702. PubMed ID: 25166584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Electronic Structures and Phonon Dynamics in Quantum Dot Superlattices by Manipulation of Interior Nanospace.
    Chang IY; Kim D; Hyeon-Deuk K
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18321-7. PubMed ID: 27385641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-modulated Ge superlattices.
    Virgilio M; Grosso G
    J Phys Condens Matter; 2015 Dec; 27(48):485305. PubMed ID: 26569138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Six new silicon phases with direct band gaps.
    Wei Q; Tong W; Wei B; Zhang M; Peng X
    Phys Chem Chem Phys; 2019 Sep; 21(36):19963-19968. PubMed ID: 31478037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A High-Throughput Study of the Electronic Structure and Physical Properties of Short-Period (GaAs)
    Liu QL; Zhao ZY; Yi JH; Zhang ZY
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30201917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-Principles Study of n*AlN/n*ScN Superlattices with High Dielectric Capacity for Energy Storage.
    Zhang WC; Wu H; Sun WF; Zhang ZP
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of stacking periodicity on the electronic and optical properties of GaAs/AlAs superlattice: a first-principles study.
    Jiang M; Xiao HY; Peng SM; Qiao L; Yang GX; Liu ZJ; Zu XT
    Sci Rep; 2020 Mar; 10(1):4862. PubMed ID: 32184414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct and quasi-direct band gap silicon allotropes with remarkable stability.
    He C; Zhang C; Li J; Peng X; Meng L; Tang C; Zhong J
    Phys Chem Chem Phys; 2016 Apr; 18(14):9682-6. PubMed ID: 26997330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles analysis for the modulation of energy band gap and optical characteristics in HgTe/CdTe superlattices.
    Laref A; Alsagri M; Alahmed ZA; Laref S
    RSC Adv; 2019 May; 9(29):16390-16405. PubMed ID: 35516368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indirect-To-Direct Band Gap Transition of One-Dimensional V
    Lee WG; Chae S; Chung YK; Yoon WS; Choi JY; Huh J
    ACS Omega; 2019 Nov; 4(19):18392-18397. PubMed ID: 31720541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures and the electronic properties of silicon-rich silicon carbide materials by first principle calculations.
    Alkhaldi ND; Barman SK; Huda MN
    Heliyon; 2019 Nov; 5(11):e02908. PubMed ID: 31844763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum wells formed in transition-metal dichalcogenide nanosheet-superlattices: stability and electronic structures from first principles.
    Su X; Zhang R; Guo C; Guo M; Ren Z
    Phys Chem Chem Phys; 2014 Jan; 16(4):1393-8. PubMed ID: 24296949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.