BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26656628)

  • 1. Rapid isolation and detection of erythropoietin in blood plasma by magnetic core gold nanoparticles and portable Raman spectroscopy.
    Agoston R; Izake EL; Sivanesan A; Lott WB; Sillence M; Steel R
    Nanomedicine; 2016 Apr; 12(3):633-641. PubMed ID: 26656628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced Raman probe for rapid nanoextraction and detection of erythropoietin in urine.
    Selbes YS; Caglayan MG; Eryilmaz M; Boyaci IH; Saglam N; Basaran AA; Tamer U
    Anal Bioanal Chem; 2016 Nov; 408(29):8447-8456. PubMed ID: 27722945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducible and label-free biosensor for the selective extraction and rapid detection of proteins in biological fluids.
    Sivanesan A; Izake EL; Agoston R; Ayoko GA; Sillence M
    J Nanobiotechnology; 2015 Jun; 13():43. PubMed ID: 26104688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids.
    Hassanain WA; Izake EL; Schmidt MS; Ayoko GA
    Biosens Bioelectron; 2017 May; 91():664-672. PubMed ID: 28110251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free identification of Erythropoietin isoforms by surface enhanced Raman spectroscopy.
    Hassanain WA; Theiss FL; Izake EL
    Talanta; 2022 Jan; 236():122879. PubMed ID: 34635259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-sensitivity biosensor based on SERS integrated with dendrimer-assisted boronic acid-functionalized magnetic nanoparticles for IL-6 detection in human serum.
    Wang Y; Guan M; Hu C; Mi F; Geng P; Li Y
    Nanotechnology; 2023 Jun; 34(35):. PubMed ID: 37080182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of SERS substrate using phage-based magnetic template for triplex assay in sepsis diagnosis.
    Nguyen AH; Shin Y; Sim SJ
    Biosens Bioelectron; 2016 Nov; 85():522-528. PubMed ID: 27209579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering.
    Najafi R; Mukherjee S; Hudson J; Sharma A; Banerjee P
    Int J Food Microbiol; 2014 Oct; 189():89-97. PubMed ID: 25133877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective melamine detection in multiple sample matrices with a portable Raman instrument using surface enhanced Raman spectroscopy-active gold nanoparticles.
    Mecker LC; Tyner KM; Kauffman JF; Arzhantsev S; Mans DJ; Gryniewicz-Ruzicka CM
    Anal Chim Acta; 2012 Jul; 733():48-55. PubMed ID: 22704375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface enhanced Raman spectroscopic studies on magnetic Fe3O4@AuAg alloy core-shell nanoparticles.
    Sun HL; Xu MM; Guo QH; Yuan YX; Shen LM; Gu RA; Yao JL
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():579-85. PubMed ID: 23800776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra sensitive label free surface enhanced Raman spectroscopy method for the detection of biomolecules.
    Hughes J; Izake EL; Lott WB; Ayoko GA; Sillence M
    Talanta; 2014 Dec; 130():20-5. PubMed ID: 25159374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace detection of tetrabromobisphenol A by SERS with DMAP-modified magnetic gold nanoclusters.
    Kadasala NR; Wei A
    Nanoscale; 2015 Jul; 7(25):10931-5. PubMed ID: 26060841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer nanopillar-gold arrays as surface-enhanced Raman spectroscopy substrate for the simultaneous detection of multiple genes.
    Picciolini S; Mehn D; Morasso C; Vanna R; Bedoni M; Pellacani P; Marchesini G; Valsesia A; Prosperi D; Tresoldi C; Ciceri F; Gramatica F
    ACS Nano; 2014 Oct; 8(10):10496-506. PubMed ID: 25280123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing.
    Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X
    Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetically optimized SERS assay for rapid detection of trace drug-related biomarkers in saliva and fingerprints.
    Yang T; Guo X; Wang H; Fu S; Wen Y; Yang H
    Biosens Bioelectron; 2015 Jun; 68():350-357. PubMed ID: 25603400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Au@Ag core-shell nanoparticles for microRNA-21 determination based on duplex-specific nuclease signal amplification and surface-enhanced Raman scattering.
    Xu W; Zhao A; Zuo F; Khan R; Hussain HMJ; Chang J
    Mikrochim Acta; 2020 Jun; 187(7):384. PubMed ID: 32533266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface enhanced Raman detection of the colon cancer biomarker cytidine by using magnetized nanoparticles of the type Fe
    Xiang Y; Yang H; Guo X; Wu Y; Ying Y; Wen Y; Yang H
    Mikrochim Acta; 2018 Feb; 185(3):195. PubMed ID: 29594694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pushing the surface-enhanced Raman scattering analyses sensitivity by magnetic concentration: a simple non core-shell approach.
    Toma SH; Santos JJ; Araki K; Toma HE
    Anal Chim Acta; 2015 Jan; 855():70-5. PubMed ID: 25542091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electrochemical biosensor for the rapid detection of erythropoietin in blood.
    Hassanain WA; Sivanesan A; Izake EL; Ayoko GA
    Talanta; 2018 Nov; 189():636-640. PubMed ID: 30086970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive aptasensor with gold nanoparticle dimers and magnetite nanoparticles for SERS-based determination of thrombin.
    Jiang N; Zhu T; Hu Y
    Mikrochim Acta; 2019 Nov; 186(12):747. PubMed ID: 31691866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.