These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 26656799)

  • 1. Endogenous spontaneous ultraweak photon emission in the formation of eye-specific retinogeniculate projections before birth.
    Bókkon I; Scholkmann F; Salari V; Császár N; Kapócs G
    Rev Neurosci; 2016 Jun; 27(4):411-9. PubMed ID: 26656799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate projections: A new explanatory framework based on endogenous ocular luminescence.
    Salari V; Scholkmann F; Vimal RLP; Császár N; Aslani M; Bókkon I
    Prog Retin Eye Res; 2017 Sep; 60():101-119. PubMed ID: 28729002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of On and Off retinal pathways and retinogeniculate projections.
    Chalupa LM; Günhan E
    Prog Retin Eye Res; 2004 Jan; 23(1):31-51. PubMed ID: 14766316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain waves and brain wiring: the role of endogenous and sensory-driven neural activity in development.
    Penn AA; Shatz CJ
    Pediatr Res; 1999 Apr; 45(4 Pt 1):447-58. PubMed ID: 10203134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eye-specific retinogeniculate segregation proceeds normally following disruption of patterned spontaneous retinal activity.
    Speer CM; Sun C; Liets LC; Stafford BK; Chapman B; Cheng HJ
    Neural Dev; 2014 Nov; 9():25. PubMed ID: 25377639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal waves are unlikely to instruct the formation of eye-specific retinogeniculate projections.
    Chalupa LM
    Neural Dev; 2009 Jul; 4():25. PubMed ID: 19580684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neurotrophic model of the development of the retinogeniculocortical pathway induced by spontaneous retinal waves.
    Elliott T; Shadbolt NR
    J Neurosci; 1999 Sep; 19(18):7951-70. PubMed ID: 10479696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomy and physiology of the afferent visual system.
    Prasad S; Galetta SL
    Handb Clin Neurol; 2011; 102():3-19. PubMed ID: 21601061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal waves are likely to instruct the formation of eye-specific retinogeniculate projections.
    Feller MB
    Neural Dev; 2009 Jul; 4():24. PubMed ID: 19580682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reassessment of the role of activity in the formation of eye-specific retinogeniculate projections.
    Chalupa LM
    Brain Res Rev; 2007 Oct; 55(2):228-36. PubMed ID: 17433447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capacity of the retinogeniculate pathway to reorganize following ablation of visual cortical areas in developing and mature cats.
    Lomber SG; Payne BR; Cornwell P; Pearson HE
    J Comp Neurol; 1993 Dec; 338(3):432-57. PubMed ID: 8113448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinogeniculate connections: A balancing act between connection specificity and receptive field diversity.
    Alonso JM; Yeh CI; Weng C; Stoelzel C
    Prog Brain Res; 2006; 154():3-13. PubMed ID: 17010700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. My recollections of Hubel and Wiesel and a brief review of functional circuitry in the visual pathway.
    Alonso JM
    J Physiol; 2009 Jun; 587(Pt 12):2783-90. PubMed ID: 19525563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity.
    Chapman B; Jacobson MD; Reiter HO; Stryker MP
    Nature; 1986 Nov 13-19; 324(6093):154-6. PubMed ID: 3785380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical organization of the visual system of the mink, Mustela vison.
    McConnell SK; LeVay S
    J Comp Neurol; 1986 Aug; 250(1):109-32. PubMed ID: 3016036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eye-specific retinogeniculate segregation independent of normal neuronal activity.
    Huberman AD; Wang GY; Liets LC; Collins OA; Chapman B; Chalupa LM
    Science; 2003 May; 300(5621):994-8. PubMed ID: 12738869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of retinal waves and synaptic normalization in retinogeniculate development.
    Eglen SJ
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1382):497-506. PubMed ID: 10212494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of competitive interactions in the postnatal development of X and Y retinogeniculate axons.
    Garraghty PE; Sur M; Sherman SM
    J Comp Neurol; 1986 Sep; 251(2):216-39. PubMed ID: 3782499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vitro model of the kitten retinogeniculate pathway.
    Guido W; Lo FS; Erzurumlu RS
    J Neurophysiol; 1997 Jan; 77(1):511-6. PubMed ID: 9120593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of ocular dominance columns in the absence of retinal input.
    Crowley JC; Katz LC
    Nat Neurosci; 1999 Dec; 2(12):1125-30. PubMed ID: 10570491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.