These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 26657081)

  • 1. Systematic Prioritization of Druggable Mutations in ∼5000 Genomes Across 16 Cancer Types Using a Structural Genomics-based Approach.
    Zhao J; Cheng F; Wang Y; Arteaga CL; Zhao Z
    Mol Cell Proteomics; 2016 Feb; 15(2):642-56. PubMed ID: 26657081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A network-based drug repositioning infrastructure for precision cancer medicine through targeting significantly mutated genes in the human cancer genomes.
    Cheng F; Zhao J; Fooksa M; Zhao Z
    J Am Med Inform Assoc; 2016 Jul; 23(4):681-91. PubMed ID: 27026610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrative genomics approach for identifying novel functional consequences of PBRM1 truncated mutations in clear cell renal cell carcinoma (ccRCC).
    Wang Y; Guo X; Bray MJ; Ding Z; Zhao Z
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):515. PubMed ID: 27556922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OncoVar: an integrated database and analysis platform for oncogenic driver variants in cancers.
    Wang T; Ruan S; Zhao X; Shi X; Teng H; Zhong J; You M; Xia K; Sun Z; Mao F
    Nucleic Acids Res; 2021 Jan; 49(D1):D1289-D1301. PubMed ID: 33179738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PanDrugs: a novel method to prioritize anticancer drug treatments according to individual genomic data.
    Piñeiro-Yáñez E; Reboiro-Jato M; Gómez-López G; Perales-Patón J; Troulé K; Rodríguez JM; Tejero H; Shimamura T; López-Casas PP; Carretero J; Valencia A; Hidalgo M; Glez-Peña D; Al-Shahrour F
    Genome Med; 2018 May; 10(1):41. PubMed ID: 29848362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes.
    Liu C; Zhao J; Lu W; Dai Y; Hockings J; Zhou Y; Nussinov R; Eng C; Cheng F
    PLoS Comput Biol; 2020 Feb; 16(2):e1007701. PubMed ID: 32101536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types.
    Cheng F; Liu C; Lin CC; Zhao J; Jia P; Li WH; Zhao Z
    PLoS Comput Biol; 2015 Sep; 11(9):e1004497. PubMed ID: 26352260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of druggable cancer driver genes amplified across TCGA datasets.
    Chen Y; McGee J; Chen X; Doman TN; Gong X; Zhang Y; Hamm N; Ma X; Higgs RE; Bhagwat SV; Buchanan S; Peng SB; Staschke KA; Yadav V; Yue Y; Kouros-Mehr H
    PLoS One; 2014; 9(5):e98293. PubMed ID: 24874471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individualized network-based drug repositioning infrastructure for precision oncology in the panomics era.
    Cheng F; Hong H; Yang S; Wei Y
    Brief Bioinform; 2017 Jul; 18(4):682-697. PubMed ID: 27296652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes.
    Cheng F; Zhao J; Zhao Z
    Brief Bioinform; 2016 Jul; 17(4):642-56. PubMed ID: 26307061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of coding and non-coding mutational hotspots in cancer genomes.
    Piraino SW; Furney SJ
    BMC Genomics; 2017 Jan; 18(1):17. PubMed ID: 28056774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein Structure.
    Tokheim C; Bhattacharya R; Niknafs N; Gygax DM; Kim R; Ryan M; Masica DL; Karchin R
    Cancer Res; 2016 Jul; 76(13):3719-31. PubMed ID: 27197156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome-Scale Investigation of Protein Allosteric Regulation Perturbed by Somatic Mutations in 7,000 Cancer Genomes.
    Shen Q; Cheng F; Song H; Lu W; Zhao J; An X; Liu M; Chen G; Zhao Z; Zhang J
    Am J Hum Genet; 2017 Jan; 100(1):5-20. PubMed ID: 27939638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CHASMplus Reveals the Scope of Somatic Missense Mutations Driving Human Cancers.
    Tokheim C; Karchin R
    Cell Syst; 2019 Jul; 9(1):9-23.e8. PubMed ID: 31202631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional consequences of somatic mutations in cancer using protein pocket-based prioritization approach.
    Vuong H; Cheng F; Lin CC; Zhao Z
    Genome Med; 2014; 6(10):81. PubMed ID: 25360158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein dynamics analysis identifies candidate cancer driver genes and mutations in TCGA data.
    Sayılgan JF; Haliloğlu T; Gönen M
    Proteins; 2021 Jun; 89(6):721-730. PubMed ID: 33550612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring preferred amino acid mutations in cancer genes: Applications to identify potential drug targets.
    Anoosha P; Sakthivel R; Michael Gromiha M
    Biochim Biophys Acta; 2016 Feb; 1862(2):155-65. PubMed ID: 26581171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the functional consequences of somatic missense mutations found in tumors.
    Carter H; Karchin R
    Methods Mol Biol; 2014; 1101():135-59. PubMed ID: 24233781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.