BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 26657081)

  • 1. Systematic Prioritization of Druggable Mutations in ∼5000 Genomes Across 16 Cancer Types Using a Structural Genomics-based Approach.
    Zhao J; Cheng F; Wang Y; Arteaga CL; Zhao Z
    Mol Cell Proteomics; 2016 Feb; 15(2):642-56. PubMed ID: 26657081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A network-based drug repositioning infrastructure for precision cancer medicine through targeting significantly mutated genes in the human cancer genomes.
    Cheng F; Zhao J; Fooksa M; Zhao Z
    J Am Med Inform Assoc; 2016 Jul; 23(4):681-91. PubMed ID: 27026610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrative genomics approach for identifying novel functional consequences of PBRM1 truncated mutations in clear cell renal cell carcinoma (ccRCC).
    Wang Y; Guo X; Bray MJ; Ding Z; Zhao Z
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):515. PubMed ID: 27556922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OncoVar: an integrated database and analysis platform for oncogenic driver variants in cancers.
    Wang T; Ruan S; Zhao X; Shi X; Teng H; Zhong J; You M; Xia K; Sun Z; Mao F
    Nucleic Acids Res; 2021 Jan; 49(D1):D1289-D1301. PubMed ID: 33179738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PanDrugs: a novel method to prioritize anticancer drug treatments according to individual genomic data.
    Piñeiro-Yáñez E; Reboiro-Jato M; Gómez-López G; Perales-Patón J; Troulé K; Rodríguez JM; Tejero H; Shimamura T; López-Casas PP; Carretero J; Valencia A; Hidalgo M; Glez-Peña D; Al-Shahrour F
    Genome Med; 2018 May; 10(1):41. PubMed ID: 29848362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes.
    Liu C; Zhao J; Lu W; Dai Y; Hockings J; Zhou Y; Nussinov R; Eng C; Cheng F
    PLoS Comput Biol; 2020 Feb; 16(2):e1007701. PubMed ID: 32101536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Gene Gravity Model for the Evolution of Cancer Genomes: A Study of 3,000 Cancer Genomes across 9 Cancer Types.
    Cheng F; Liu C; Lin CC; Zhao J; Jia P; Li WH; Zhao Z
    PLoS Comput Biol; 2015 Sep; 11(9):e1004497. PubMed ID: 26352260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of druggable cancer driver genes amplified across TCGA datasets.
    Chen Y; McGee J; Chen X; Doman TN; Gong X; Zhang Y; Hamm N; Ma X; Higgs RE; Bhagwat SV; Buchanan S; Peng SB; Staschke KA; Yadav V; Yue Y; Kouros-Mehr H
    PLoS One; 2014; 9(5):e98293. PubMed ID: 24874471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individualized network-based drug repositioning infrastructure for precision oncology in the panomics era.
    Cheng F; Hong H; Yang S; Wei Y
    Brief Bioinform; 2017 Jul; 18(4):682-697. PubMed ID: 27296652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes.
    Cheng F; Zhao J; Zhao Z
    Brief Bioinform; 2016 Jul; 17(4):642-56. PubMed ID: 26307061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of coding and non-coding mutational hotspots in cancer genomes.
    Piraino SW; Furney SJ
    BMC Genomics; 2017 Jan; 18(1):17. PubMed ID: 28056774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein Structure.
    Tokheim C; Bhattacharya R; Niknafs N; Gygax DM; Kim R; Ryan M; Masica DL; Karchin R
    Cancer Res; 2016 Jul; 76(13):3719-31. PubMed ID: 27197156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome-Scale Investigation of Protein Allosteric Regulation Perturbed by Somatic Mutations in 7,000 Cancer Genomes.
    Shen Q; Cheng F; Song H; Lu W; Zhao J; An X; Liu M; Chen G; Zhao Z; Zhang J
    Am J Hum Genet; 2017 Jan; 100(1):5-20. PubMed ID: 27939638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CHASMplus Reveals the Scope of Somatic Missense Mutations Driving Human Cancers.
    Tokheim C; Karchin R
    Cell Syst; 2019 Jul; 9(1):9-23.e8. PubMed ID: 31202631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional consequences of somatic mutations in cancer using protein pocket-based prioritization approach.
    Vuong H; Cheng F; Lin CC; Zhao Z
    Genome Med; 2014; 6(10):81. PubMed ID: 25360158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein dynamics analysis identifies candidate cancer driver genes and mutations in TCGA data.
    Sayılgan JF; Haliloğlu T; Gönen M
    Proteins; 2021 Jun; 89(6):721-730. PubMed ID: 33550612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring preferred amino acid mutations in cancer genes: Applications to identify potential drug targets.
    Anoosha P; Sakthivel R; Michael Gromiha M
    Biochim Biophys Acta; 2016 Feb; 1862(2):155-65. PubMed ID: 26581171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the functional consequences of somatic missense mutations found in tumors.
    Carter H; Karchin R
    Methods Mol Biol; 2014; 1101():135-59. PubMed ID: 24233781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.