BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 26657081)

  • 21. Systematic analysis of somatic mutations impacting gene expression in 12 tumour types.
    Ding J; McConechy MK; Horlings HM; Ha G; Chun Chan F; Funnell T; Mullaly SC; Reimand J; Bashashati A; Bader GD; Huntsman D; Aparicio S; Condon A; Shah SP
    Nat Commun; 2015 Oct; 6():8554. PubMed ID: 26436532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutational landscape of RNA-binding proteins in human cancers.
    Neelamraju Y; Gonzalez-Perez A; Bhat-Nakshatri P; Nakshatri H; Janga SC
    RNA Biol; 2018 Jan; 15(1):115-129. PubMed ID: 29023197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systematic analysis of somatic mutations driving cancer: uncovering functional protein regions in disease development.
    Mészáros B; Zeke A; Reményi A; Simon I; Dosztányi Z
    Biol Direct; 2016 May; 11():23. PubMed ID: 27150584
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tissue-Specific Signaling Networks Rewired by Major Somatic Mutations in Human Cancer Revealed by Proteome-Wide Discovery.
    Zhao J; Cheng F; Zhao Z
    Cancer Res; 2017 Jun; 77(11):2810-2821. PubMed ID: 28364002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrative omics analyses broaden treatment targets in human cancer.
    Sengupta S; Sun SQ; Huang KL; Oh C; Bailey MH; Varghese R; Wyczalkowski MA; Ning J; Tripathi P; McMichael JF; Johnson KJ; Kandoth C; Welch J; Ma C; Wendl MC; Payne SH; Fenyö D; Townsend RR; Dipersio JF; Chen F; Ding L
    Genome Med; 2018 Jul; 10(1):60. PubMed ID: 30053901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CanDriS: posterior profiling of cancer-driving sites based on two-component evolutionary model.
    Zhao W; Yang J; Wu J; Cai G; Zhang Y; Haltom J; Su W; Dong MJ; Chen S; Wu J; Zhou Z; Gu X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Druggable cancer secretome: neoplasm-associated traits.
    Narayanan R
    Cancer Genomics Proteomics; 2015; 12(3):119-31. PubMed ID: 25977171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. iCAGES: integrated CAncer GEnome Score for comprehensively prioritizing driver genes in personal cancer genomes.
    Dong C; Guo Y; Yang H; He Z; Liu X; Wang K
    Genome Med; 2016 Dec; 8(1):135. PubMed ID: 28007024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pathway and network analysis of more than 2500 whole cancer genomes.
    Reyna MA; Haan D; Paczkowska M; Verbeke LPC; Vazquez M; Kahraman A; Pulido-Tamayo S; Barenboim J; Wadi L; Dhingra P; Shrestha R; Getz G; Lawrence MS; Pedersen JS; Rubin MA; Wheeler DA; Brunak S; Izarzugaza JMG; Khurana E; Marchal K; von Mering C; Sahinalp SC; Valencia A; ; Reimand J; Stuart JM; Raphael BJ;
    Nat Commun; 2020 Feb; 11(1):729. PubMed ID: 32024854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles.
    Wang L; Li F; Sheng J; Wong ST
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S6. PubMed ID: 26099165
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identifying Driver Interfaces Enriched for Somatic Missense Mutations in Tumors.
    Ozturk K; Carter H
    Methods Mol Biol; 2019; 1907():51-72. PubMed ID: 30542990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Understanding the impacts of missense mutations on structures and functions of human cancer-related genes: A preliminary computational analysis of the COSMIC Cancer Gene Census.
    Malhotra S; Alsulami AF; Heiyun Y; Ochoa BM; Jubb H; Forbes S; Blundell TL
    PLoS One; 2019; 14(7):e0219935. PubMed ID: 31323058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational Approaches to Prioritize Cancer Driver Missense Mutations.
    Zhao F; Zheng L; Goncearenco A; Panchenko AR; Li M
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30037003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins.
    Rozenblatt-Rosen O; Deo RC; Padi M; Adelmant G; Calderwood MA; Rolland T; Grace M; Dricot A; Askenazi M; Tavares M; Pevzner SJ; Abderazzaq F; Byrdsong D; Carvunis AR; Chen AA; Cheng J; Correll M; Duarte M; Fan C; Feltkamp MC; Ficarro SB; Franchi R; Garg BK; Gulbahce N; Hao T; Holthaus AM; James R; Korkhin A; Litovchick L; Mar JC; Pak TR; Rabello S; Rubio R; Shen Y; Singh S; Spangle JM; Tasan M; Wanamaker S; Webber JT; Roecklein-Canfield J; Johannsen E; Barabási AL; Beroukhim R; Kieff E; Cusick ME; Hill DE; Münger K; Marto JA; Quackenbush J; Roth FP; DeCaprio JA; Vidal M
    Nature; 2012 Jul; 487(7408):491-5. PubMed ID: 22810586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.
    Engin HB; Kreisberg JF; Carter H
    PLoS One; 2016; 11(4):e0152929. PubMed ID: 27043210
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations.
    Carter H; Chen S; Isik L; Tyekucheva S; Velculescu VE; Kinzler KW; Vogelstein B; Karchin R
    Cancer Res; 2009 Aug; 69(16):6660-7. PubMed ID: 19654296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding genomic alterations in cancer genomes using an integrative network approach.
    Wang E
    Cancer Lett; 2013 Nov; 340(2):261-9. PubMed ID: 23266571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MUFFINN: cancer gene discovery via network analysis of somatic mutation data.
    Cho A; Shim JE; Kim E; Supek F; Lehner B; Lee I
    Genome Biol; 2016 Jun; 17(1):129. PubMed ID: 27333808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer.
    Tang YC; Ho SC; Tan E; Ng AWT; McPherson JR; Goh GYL; Teh BT; Bard F; Rozen SG
    Breast Cancer Res; 2018 Mar; 20(1):22. PubMed ID: 29566768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.