These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Systematic analysis of somatic mutations driving cancer: uncovering functional protein regions in disease development. Mészáros B; Zeke A; Reményi A; Simon I; Dosztányi Z Biol Direct; 2016 May; 11():23. PubMed ID: 27150584 [TBL] [Abstract][Full Text] [Related]
24. Tissue-Specific Signaling Networks Rewired by Major Somatic Mutations in Human Cancer Revealed by Proteome-Wide Discovery. Zhao J; Cheng F; Zhao Z Cancer Res; 2017 Jun; 77(11):2810-2821. PubMed ID: 28364002 [TBL] [Abstract][Full Text] [Related]
25. Integrative omics analyses broaden treatment targets in human cancer. Sengupta S; Sun SQ; Huang KL; Oh C; Bailey MH; Varghese R; Wyczalkowski MA; Ning J; Tripathi P; McMichael JF; Johnson KJ; Kandoth C; Welch J; Ma C; Wendl MC; Payne SH; Fenyö D; Townsend RR; Dipersio JF; Chen F; Ding L Genome Med; 2018 Jul; 10(1):60. PubMed ID: 30053901 [TBL] [Abstract][Full Text] [Related]
26. CanDriS: posterior profiling of cancer-driving sites based on two-component evolutionary model. Zhao W; Yang J; Wu J; Cai G; Zhang Y; Haltom J; Su W; Dong MJ; Chen S; Wu J; Zhou Z; Gu X Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876217 [TBL] [Abstract][Full Text] [Related]
27. Druggable cancer secretome: neoplasm-associated traits. Narayanan R Cancer Genomics Proteomics; 2015; 12(3):119-31. PubMed ID: 25977171 [TBL] [Abstract][Full Text] [Related]
28. iCAGES: integrated CAncer GEnome Score for comprehensively prioritizing driver genes in personal cancer genomes. Dong C; Guo Y; Yang H; He Z; Liu X; Wang K Genome Med; 2016 Dec; 8(1):135. PubMed ID: 28007024 [TBL] [Abstract][Full Text] [Related]
29. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles. Wang L; Li F; Sheng J; Wong ST BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S6. PubMed ID: 26099165 [TBL] [Abstract][Full Text] [Related]
30. Pathway and network analysis of more than 2500 whole cancer genomes. Reyna MA; Haan D; Paczkowska M; Verbeke LPC; Vazquez M; Kahraman A; Pulido-Tamayo S; Barenboim J; Wadi L; Dhingra P; Shrestha R; Getz G; Lawrence MS; Pedersen JS; Rubin MA; Wheeler DA; Brunak S; Izarzugaza JMG; Khurana E; Marchal K; von Mering C; Sahinalp SC; Valencia A; ; Reimand J; Stuart JM; Raphael BJ; Nat Commun; 2020 Feb; 11(1):729. PubMed ID: 32024854 [TBL] [Abstract][Full Text] [Related]
31. Identifying Driver Interfaces Enriched for Somatic Missense Mutations in Tumors. Ozturk K; Carter H Methods Mol Biol; 2019; 1907():51-72. PubMed ID: 30542990 [TBL] [Abstract][Full Text] [Related]
32. Computational Approaches to Prioritize Cancer Driver Missense Mutations. Zhao F; Zheng L; Goncearenco A; Panchenko AR; Li M Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30037003 [TBL] [Abstract][Full Text] [Related]
33. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis. Li A; Chapuy B; Varelas X; Sebastiani P; Monti S Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402 [TBL] [Abstract][Full Text] [Related]
34. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Rozenblatt-Rosen O; Deo RC; Padi M; Adelmant G; Calderwood MA; Rolland T; Grace M; Dricot A; Askenazi M; Tavares M; Pevzner SJ; Abderazzaq F; Byrdsong D; Carvunis AR; Chen AA; Cheng J; Correll M; Duarte M; Fan C; Feltkamp MC; Ficarro SB; Franchi R; Garg BK; Gulbahce N; Hao T; Holthaus AM; James R; Korkhin A; Litovchick L; Mar JC; Pak TR; Rabello S; Rubio R; Shen Y; Singh S; Spangle JM; Tasan M; Wanamaker S; Webber JT; Roecklein-Canfield J; Johannsen E; Barabási AL; Beroukhim R; Kieff E; Cusick ME; Hill DE; Münger K; Marto JA; Quackenbush J; Roth FP; DeCaprio JA; Vidal M Nature; 2012 Jul; 487(7408):491-5. PubMed ID: 22810586 [TBL] [Abstract][Full Text] [Related]
35. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces. Engin HB; Kreisberg JF; Carter H PLoS One; 2016; 11(4):e0152929. PubMed ID: 27043210 [TBL] [Abstract][Full Text] [Related]
36. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Carter H; Chen S; Isik L; Tyekucheva S; Velculescu VE; Kinzler KW; Vogelstein B; Karchin R Cancer Res; 2009 Aug; 69(16):6660-7. PubMed ID: 19654296 [TBL] [Abstract][Full Text] [Related]
37. Understanding genomic alterations in cancer genomes using an integrative network approach. Wang E Cancer Lett; 2013 Nov; 340(2):261-9. PubMed ID: 23266571 [TBL] [Abstract][Full Text] [Related]
38. MUFFINN: cancer gene discovery via network analysis of somatic mutation data. Cho A; Shim JE; Kim E; Supek F; Lehner B; Lee I Genome Biol; 2016 Jun; 17(1):129. PubMed ID: 27333808 [TBL] [Abstract][Full Text] [Related]
39. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer. Tang YC; Ho SC; Tan E; Ng AWT; McPherson JR; Goh GYL; Teh BT; Bard F; Rozen SG Breast Cancer Res; 2018 Mar; 20(1):22. PubMed ID: 29566768 [TBL] [Abstract][Full Text] [Related]
40. Genome-wide analysis of noncoding regulatory mutations in cancer. Weinhold N; Jacobsen A; Schultz N; Sander C; Lee W Nat Genet; 2014 Nov; 46(11):1160-5. PubMed ID: 25261935 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]