These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 26657319)
1. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries. Guo G; Yao X; Ang H; Tan H; Zhang Y; Guo Y; Fong E; Yan Q Nanotechnology; 2016 Jan; 27(4):045401. PubMed ID: 26657319 [TBL] [Abstract][Full Text] [Related]
2. Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes. Yoo E; Zhou H ChemSusChem; 2016 Jun; 9(11):1249-54. PubMed ID: 27120298 [TBL] [Abstract][Full Text] [Related]
3. Platinum and palladium nanotubes based on genetically engineered elastin-mimetic fusion protein-fiber templates: synthesis and application in lithium-O₂ batteries. Guo G; Truong TH; Tan H; Ang H; Zhang W; Xu C; Rui X; Hu Z; Fong E; Yan Q Chem Asian J; 2014 Sep; 9(9):2555-9. PubMed ID: 24962727 [TBL] [Abstract][Full Text] [Related]
4. The Effect of Potassium Impurities Deliberately Introduced into Activated Carbon Cathodes on the Performance of Lithium-Oxygen Batteries. Zhai D; Lau KC; Wang HH; Wen J; Miller DJ; Kang F; Li B; Zavadil K; Curtiss LA ChemSusChem; 2015 Dec; 8(24):4235-41. PubMed ID: 26630086 [TBL] [Abstract][Full Text] [Related]
5. Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries. Liao K; Zhang T; Wang Y; Li F; Jian Z; Yu H; Zhou H ChemSusChem; 2015 Apr; 8(8):1429-34. PubMed ID: 25809196 [TBL] [Abstract][Full Text] [Related]
6. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium-Oxygen Batteries. Liu B; Xu W; Yan P; Bhattacharya P; Cao R; Bowden ME; Engelhard MH; Wang CM; Zhang JG ChemSusChem; 2015 Nov; 8(21):3697-703. PubMed ID: 26457378 [TBL] [Abstract][Full Text] [Related]
7. Carbon-Free Cathodes: A Step Forward in the Development of Stable Lithium-Oxygen Batteries. Landa-Medrano I; Pinedo R; Ortiz-Vitoriano N; de Larramendi IR; Rojo T ChemSusChem; 2015 Dec; 8(23):3932-40. PubMed ID: 26493650 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes. Wu G; Mack NH; Gao W; Ma S; Zhong R; Han J; Baldwin JK; Zelenay P ACS Nano; 2012 Nov; 6(11):9764-76. PubMed ID: 23036092 [TBL] [Abstract][Full Text] [Related]
9. Hierarchical Nitrogen-Doped Graphene/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries. Shu C; Li B; Zhang B; Su D ChemSusChem; 2015 Dec; 8(23):3973-6. PubMed ID: 26559030 [TBL] [Abstract][Full Text] [Related]
10. Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries. Park HW; Lee DU; Park MG; Ahmed R; Seo MH; Nazar LF; Chen Z ChemSusChem; 2015 Mar; 8(6):1058-65. PubMed ID: 25684405 [TBL] [Abstract][Full Text] [Related]
11. Dual Heteroatom-Doped Carbon Nanofoam-Wrapped Iron Monosulfide Nanoparticles: An Efficient Cathode Catalyst for Li-O Ramakrishnan P; Shanmugam S; Kim JH ChemSusChem; 2017 Apr; 10(7):1554-1562. PubMed ID: 28145092 [TBL] [Abstract][Full Text] [Related]
12. Influence of Binders and Solvents on Stability of Ru/RuO Vankova S; Francia C; Amici J; Zeng J; Bodoardo S; Penazzi N; Collins G; Geaney H; O'Dwyer C ChemSusChem; 2017 Feb; 10(3):575-586. PubMed ID: 27899004 [TBL] [Abstract][Full Text] [Related]
13. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. Yilmaz E; Yogi C; Yamanaka K; Ohta T; Byon HR Nano Lett; 2013 Oct; 13(10):4679-84. PubMed ID: 24024674 [TBL] [Abstract][Full Text] [Related]
14. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries. Dong S; Chen X; Zhang K; Gu L; Zhang L; Zhou X; Li L; Liu Z; Han P; Xu H; Yao J; Zhang C; Zhang X; Shang C; Cui G; Chen L Chem Commun (Camb); 2011 Oct; 47(40):11291-3. PubMed ID: 21927745 [TBL] [Abstract][Full Text] [Related]
15. MnCo2O4 nanowires anchored on reduced graphene oxide sheets as effective bifunctional catalysts for Li-O2 battery cathodes. Kim JG; Kim Y; Noh Y; Kim WB ChemSusChem; 2015 May; 8(10):1752-60. PubMed ID: 25908219 [TBL] [Abstract][Full Text] [Related]
16. Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Chen S; Chen P; Wang Y Nanoscale; 2011 Oct; 3(10):4323-9. PubMed ID: 21879120 [TBL] [Abstract][Full Text] [Related]
17. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Forney MW; Ganter MJ; Staub JW; Ridgley RD; Landi BJ Nano Lett; 2013 Sep; 13(9):4158-63. PubMed ID: 23902472 [TBL] [Abstract][Full Text] [Related]
18. Li-O(2) battery based on highly efficient Sb-doped tin oxide supported Ru nanoparticles. Li F; Tang DM; Jian Z; Liu D; Golberg D; Yamada A; Zhou H Adv Mater; 2014 Jul; 26(27):4659-64. PubMed ID: 24861825 [TBL] [Abstract][Full Text] [Related]
19. Ordered mesoporous carbon electrodes for Li-O2 batteries. Park JB; Lee J; Yoon CS; Sun YK ACS Appl Mater Interfaces; 2013 Dec; 5(24):13426-31. PubMed ID: 24236914 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. Oh SH; Black R; Pomerantseva E; Lee JH; Nazar LF Nat Chem; 2012 Dec; 4(12):1004-10. PubMed ID: 23174980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]