BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 26657323)

  • 1. Optogenetics in Mice Performing a Visual Discrimination Task: Measurement and Suppression of Retinal Activation and the Resulting Behavioral Artifact.
    Danskin B; Denman D; Valley M; Ollerenshaw D; Williams D; Groblewski P; Reid C; Olsen S; Blanche T; Waters J
    PLoS One; 2015; 10(12):e0144760. PubMed ID: 26657323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic Stimulation of Cholinergic Amacrine Cells Improves Capillary Blood Flow in Diabetic Retinopathy.
    Ivanova E; Bianchimano P; Corona C; Eleftheriou CG; Sagdullaev BT
    Invest Ophthalmol Vis Sci; 2020 Aug; 61(10):44. PubMed ID: 32841313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity.
    Gaub BM; Berry MH; Holt AE; Isacoff EY; Flannery JG
    Mol Ther; 2015 Oct; 23(10):1562-71. PubMed ID: 26137852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics.
    Pisanello F; Sileo L; Oldenburg IA; Pisanello M; Martiradonna L; Assad JA; Sabatini BL; De Vittorio M
    Neuron; 2014 Jun; 82(6):1245-54. PubMed ID: 24881834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection.
    Fiscella M; Farrow K; Jones IL; Jäckel D; Müller J; Frey U; Bakkum DJ; Hantz P; Roska B; Hierlemann A
    J Neurosci Methods; 2012 Oct; 211(1):103-13. PubMed ID: 22939921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release.
    Melchior JR; Ferris MJ; Stuber GD; Riddle DR; Jones SR
    J Neurochem; 2015 Sep; 134(5):833-44. PubMed ID: 26011081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step optogenetics with multifunctional flexible polymer fibers.
    Park S; Guo Y; Jia X; Choe HK; Grena B; Kang J; Park J; Lu C; Canales A; Chen R; Yim YS; Choi GB; Fink Y; Anikeeva P
    Nat Neurosci; 2017 Apr; 20(4):612-619. PubMed ID: 28218915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic entrainment of neural oscillations with hybrid fiber probes.
    Kilias A; Canales A; Froriep UP; Park S; Egert U; Anikeeva P
    J Neural Eng; 2018 Oct; 15(5):056006. PubMed ID: 29923505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Channelrhodopsin and Archaerhodopsin in Cholinergic Neurons of Cre-Lox Transgenic Mice.
    Hedrick T; Danskin B; Larsen RS; Ollerenshaw D; Groblewski P; Valley M; Olsen S; Waters J
    PLoS One; 2016; 11(5):e0156596. PubMed ID: 27243816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved CoChR Variants Restore Visual Acuity and Contrast Sensitivity in a Mouse Model of Blindness under Ambient Light Conditions.
    Ganjawala TH; Lu Q; Fenner MD; Abrams GW; Pan ZH
    Mol Ther; 2019 Jun; 27(6):1195-1205. PubMed ID: 31010741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blue Light Increases Neuronal Activity-Regulated Gene Expression in the Absence of Optogenetic Proteins.
    Tyssowski KM; Gray JM
    eNeuro; 2019; 6(5):. PubMed ID: 31444226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recording light-evoked postsynaptic responses in neurons in dark-adapted, mouse retinal slice preparations using patch clamp techniques.
    Hellmer CB; Ichinose T
    J Vis Exp; 2015 Feb; (96):. PubMed ID: 25741904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiology of retinal ganglion cells in the mouse: a study of a normally pigmented mouse and a congenic hypopigmentation mutant, pearl.
    Balkema GW; Pinto LH
    J Neurophysiol; 1982 Oct; 48(4):968-80. PubMed ID: 7143036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel carbon tipped single micro-optrode for combined optogenetics and electrophysiology.
    Budai D; Vizvári AD; Bali ZK; Márki B; Nagy LV; Kónya Z; Madarász D; Henn-Mike N; Varga C; Hernádi I
    PLoS One; 2018; 13(3):e0193836. PubMed ID: 29513711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repetitive and retinotopically restricted activation of the dorsal lateral geniculate nucleus with optogenetics.
    Castonguay A; Thomas S; Lesage F; Casanova C
    PLoS One; 2014; 9(4):e94633. PubMed ID: 24728275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bicistronic Construct for Optogenetic Prosthesis of Ganglion Cell Receptive Field of Degenerative Retina.
    Petrovskaya LE; Roshchin MV; Smirnova GR; Kolotova DE; Balaban PM; Ostrovsky MA; Malyshev AY
    Dokl Biochem Biophys; 2019 May; 486(1):184-186. PubMed ID: 31367817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of Rod and Cone Pathways to Retinal Direction Selectivity Through Development.
    Rosa JM; Morrie RD; Baertsch HC; Feller MB
    J Neurosci; 2016 Sep; 36(37):9683-95. PubMed ID: 27629718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of retinal responses evoked by transscleral electrical stimulation detected by intrinsic signal imaging in macaque monkeys.
    Inomata K; Tsunoda K; Hanazono G; Kazato Y; Shinoda K; Yuzawa M; Tanifuji M; Miyake Y
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):2193-200. PubMed ID: 18436852
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.