These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 26657382)
1. An analysis of the dissipation of pharmaceuticals under thirteen different soil conditions. Kodešová R; Kočárek M; Klement A; Golovko O; Koba O; Fér M; Nikodem A; Vondráčková L; Jakšík O; Grabic R Sci Total Environ; 2016 Feb; 544():369-81. PubMed ID: 26657382 [TBL] [Abstract][Full Text] [Related]
2. Pharmaceuticals' sorptions relative to properties of thirteen different soils. Kodešová R; Grabic R; Kočárek M; Klement A; Golovko O; Fér M; Nikodem A; Jakšík O Sci Total Environ; 2015 Apr; 511():435-43. PubMed ID: 25569579 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous sorption of four ionizable pharmaceuticals in different horizons of three soil types. Kočárek M; Kodešová R; Vondráčková L; Golovko O; Fér M; Klement A; Nikodem A; Jakšík O; Grabic R Environ Pollut; 2016 Nov; 218():563-573. PubMed ID: 27460901 [TBL] [Abstract][Full Text] [Related]
4. How microbial community composition, sorption and simultaneous application of six pharmaceuticals affect their dissipation in soils. Kodešová R; Chroňáková A; Grabicová K; Kočárek M; Schmidtová Z; Frková Z; Vojs Staňová A; Nikodem A; Klement A; Fér M; Grabic R Sci Total Environ; 2020 Dec; 746():141134. PubMed ID: 32768780 [TBL] [Abstract][Full Text] [Related]
5. Transformation of atenolol, metoprolol, and carbamazepine in soils: The identification, quantification, and stability of the transformation products and further implications for the environment. Koba O; Golovko O; Kodešová R; Klement A; Grabic R Environ Pollut; 2016 Nov; 218():574-585. PubMed ID: 27514306 [TBL] [Abstract][Full Text] [Related]
6. Competitive and synergic sorption of carbamazepine, citalopram, clindamycin, fexofenadine, irbesartan and sulfamethoxazole in seven soils. Schmidtová Z; Kodešová R; Grabicová K; Kočárek M; Fér M; Švecová H; Klement A; Nikodem A; Grabic R J Contam Hydrol; 2020 Oct; 234():103680. PubMed ID: 32682147 [TBL] [Abstract][Full Text] [Related]
7. Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils. Lin K; Gan J Chemosphere; 2011 Apr; 83(3):240-6. PubMed ID: 21247615 [TBL] [Abstract][Full Text] [Related]
8. The role of sorption and biodegradation in the removal of acetaminophen, carbamazepine, caffeine, naproxen and sulfamethoxazole during soil contact: A kinetics study. Martínez-Hernández V; Meffe R; Herrera López S; de Bustamante I Sci Total Environ; 2016 Jul; 559():232-241. PubMed ID: 27070381 [TBL] [Abstract][Full Text] [Related]
9. Dissipation of sulfamethoxazole and trimethoprim antibiotics from manure-amended soils. Wu Y; Williams M; Smith L; Chen D; Kookana R J Environ Sci Health B; 2012; 47(4):240-9. PubMed ID: 22428885 [TBL] [Abstract][Full Text] [Related]
10. Antibiotics degradation in soil: A case of clindamycin, trimethoprim, sulfamethoxazole and their transformation products. Koba O; Golovko O; Kodešová R; Fér M; Grabic R Environ Pollut; 2017 Jan; 220(Pt B):1251-1263. PubMed ID: 27838062 [TBL] [Abstract][Full Text] [Related]
11. Root uptake of atenolol, sulfamethoxazole and carbamazepine, and their transformation in three soils and four plants. Kodešová R; Klement A; Golovko O; Fér M; Nikodem A; Kočárek M; Grabic R Environ Sci Pollut Res Int; 2019 Apr; 26(10):9876-9891. PubMed ID: 30734257 [TBL] [Abstract][Full Text] [Related]
12. Dissipation of sulfamethoxazole in pasture soils as affected by soil and environmental factors. Srinivasan P; Sarmah AK Sci Total Environ; 2014 May; 479-480():284-91. PubMed ID: 24565861 [TBL] [Abstract][Full Text] [Related]
13. Dissipation and leaching potential of selected pharmaceutically active compounds in soils amended with biosolids. Wu C; Spongberg AL; Witter JD; Fang M; Czajkowski KP; Ames A Arch Environ Contam Toxicol; 2010 Oct; 59(3):343-51. PubMed ID: 20340015 [TBL] [Abstract][Full Text] [Related]
14. Sorption and degradation of pharmaceuticals and personal care products (PPCPs) in soils. Yu Y; Liu Y; Wu L Environ Sci Pollut Res Int; 2013 Jun; 20(6):4261-7. PubMed ID: 23292228 [TBL] [Abstract][Full Text] [Related]
15. Deriving sulfamethoxazole dissipation endpoints in pasture soils using first order and biphasic kinetic models. Srinivasan P; Sarmah AK; Rohan M Sci Total Environ; 2014 Aug; 488-489():146-56. PubMed ID: 24830927 [TBL] [Abstract][Full Text] [Related]
16. Tuning down the environmental interests of organoclays for emerging pollutants: Pharmaceuticals in presence of electrolytes. Guégan R; De Oliveira T; Le Gleuher J; Sugahara Y Chemosphere; 2020 Jan; 239():124730. PubMed ID: 31726518 [TBL] [Abstract][Full Text] [Related]
17. Factors affecting the degradation of pharmaceuticals in agricultural soils. Monteiro SC; Boxall AB Environ Toxicol Chem; 2009 Dec; 28(12):2546-54. PubMed ID: 19580336 [TBL] [Abstract][Full Text] [Related]
18. Does long-term irrigation with untreated wastewater accelerate the dissipation of pharmaceuticals in soil? Dalkmann P; Siebe C; Amelung W; Schloter M; Siemens J Environ Sci Technol; 2014 May; 48(9):4963-70. PubMed ID: 24702276 [TBL] [Abstract][Full Text] [Related]
19. Sorption and degradation of contaminants of emerging concern in soils under aerobic and anaerobic conditions. Biel-Maeso M; González-González C; Lara-Martín PA; Corada-Fernández C Sci Total Environ; 2019 May; 666():662-671. PubMed ID: 30812000 [TBL] [Abstract][Full Text] [Related]
20. Sorption of selected veterinary antibiotics onto dairy farming soils of contrasting nature. Srinivasan P; Sarmah AK; Manley-Harris M Sci Total Environ; 2014 Feb; 472():695-703. PubMed ID: 24326064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]