BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 26657513)

  • 1. Airway Segmentation and Centerline Extraction from Thoracic CT - Comparison of a New Method to State of the Art Commercialized Methods.
    Reynisson PJ; Scali M; Smistad E; Hofstad EF; Leira HO; Lindseth F; Nagelhus Hernes TA; Amundsen T; Sorger H; Langø T
    PLoS One; 2015; 10(12):e0144282. PubMed ID: 26657513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional human airway segmentation methods for clinical virtual bronchoscopy.
    Kiraly AP; Higgins WE; McLennan G; Hoffman EA; Reinhardt JM
    Acad Radiol; 2002 Oct; 9(10):1153-68. PubMed ID: 12385510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-clinical validation of virtual bronchoscopy using 3D Slicer.
    Nardelli P; Jaeger A; O'Shea C; Khan KA; Kennedy MP; Cantillon-Murphy P
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):25-38. PubMed ID: 27325238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.
    Meng Q; Kitasaka T; Nimura Y; Oda M; Ueno J; Mori K
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):245-261. PubMed ID: 27796791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual bronchoscopy for three--dimensional pulmonary image assessment: state of the art and future needs.
    Higgins WE; Ramaswamy K; Swift RD; McLennan G; Hoffman EA
    Radiographics; 1998; 18(3):761-78. PubMed ID: 9599397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies.
    Haas B; Coradi T; Scholz M; Kunz P; Huber M; Oppitz U; André L; Lengkeek V; Huyskens D; van Esch A; Reddick R
    Phys Med Biol; 2008 Mar; 53(6):1751-71. PubMed ID: 18367801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new visualization method for navigated bronchoscopy.
    Reynisson PJ; Hofstad EF; Leira HO; Askeland C; Langø T; Sorger H; Lindseth F; Amundsen T; Hernes TAN
    Minim Invasive Ther Allied Technol; 2018 Apr; 27(2):119-126. PubMed ID: 28554242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier.
    Wolterink JM; van Hamersvelt RW; Viergever MA; Leiner T; Išgum I
    Med Image Anal; 2019 Jan; 51():46-60. PubMed ID: 30388501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Virtual bronchoscopy: the correlation between endoscopic simulation and bronchoscopic findings].
    Salvolini L; Gasparini S; Baldelli S; Bichi Secchi E; Amici F
    Radiol Med; 1997 Nov; 94(5):454-62. PubMed ID: 9465209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid segmentation and virtual bronchoscopy based on CT images.
    Mayer D; Bartz D; Fischer J; Ley S; del Río A; Thust S; Kauczor HU; Heussel CP
    Acad Radiol; 2004 May; 11(5):551-65. PubMed ID: 15147620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic registration of CT images to patient during the initial phase of bronchoscopy: a clinical pilot study.
    Hofstad EF; Sorger H; Leira HO; Amundsen T; Langø T
    Med Phys; 2014 Apr; 41(4):041903. PubMed ID: 24694134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Fully automatic detection and quantification of emphysema on thin section MD-CT of the chest by a new and dedicated software].
    Achenbach T; Weinheimer O; Buschsieweke C; Heussel CP; Thelen M; Kauczor HU
    Rofo; 2004 Oct; 176(10):1409-15. PubMed ID: 15383971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal virtual bronchoscopy using PET/CT images.
    Englmeier KH; Seemann MD
    Comput Aided Surg; 2008 Mar; 13(2):106-13. PubMed ID: 18317959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic axis generation for virtual bronchoscopic assessment of major airway obstructions.
    Swift RD; Kiraly AP; Sherbondy AJ; Austin AL; Hoffman EA; McLennan G; Higgins WE
    Comput Med Imaging Graph; 2002; 26(2):103-18. PubMed ID: 11818189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new hybrid renderer for virtual bronchoscopy.
    Englmeier KH; Haubner M; Krapichler C; Reiser M
    Stud Health Technol Inform; 1999; 62():109-15. PubMed ID: 10538338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans.
    Tschirren J; Hoffman EA; McLennan G; Sonka M
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1529-39. PubMed ID: 16353370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Navigated bronchoscopy: a technical review.
    Reynisson PJ; Leira HO; Hernes TN; Hofstad EF; Scali M; Sorger H; Amundsen T; Lindseth F; Langø T
    J Bronchology Interv Pulmonol; 2014 Jul; 21(3):242-64. PubMed ID: 24992135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Web-based virtual endoscopy.
    Loncaric S; Markovinovic T
    Stud Health Technol Inform; 2000; 77():1187-91. PubMed ID: 11187510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lung Lesion Extraction Using a Toboggan Based Growing Automatic Segmentation Approach.
    Song J; Yang C; Fan L; Wang K; Yang F; Liu S; Tian J
    IEEE Trans Med Imaging; 2016 Jan; 35(1):337-53. PubMed ID: 26336121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of conserved structures by fusing highly variable datasets.
    Silverstein JC; Chhadia A; Dech F
    Stud Health Technol Inform; 2002; 85():494-500. PubMed ID: 15458139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.