These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 26657640)

  • 1. Targeted cross-linking-mass spectrometry determines vicinal interactomes within heterogeneous RNP complexes.
    Trahan C; Oeffinger M
    Nucleic Acids Res; 2016 Feb; 44(3):1354-69. PubMed ID: 26657640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A versatile interaction platform on the Mex67-Mtr2 receptor creates an overlap between mRNA and ribosome export.
    Yao W; Lutzmann M; Hurt E
    EMBO J; 2008 Jan; 27(1):6-16. PubMed ID: 18046452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67-Mtr2.
    Yao W; Roser D; Köhler A; Bradatsch B; Bassler J; Hurt E
    Mol Cell; 2007 Apr; 26(1):51-62. PubMed ID: 17434126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Mtr2-Mex67 NTF2-like domain complex. Structural insights into a dual role of Mtr2 for yeast nuclear export.
    Senay C; Ferrari P; Rocher C; Rieger KJ; Winter J; Platel D; Bourne Y
    J Biol Chem; 2003 Nov; 278(48):48395-403. PubMed ID: 14504280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosome-stalk biogenesis is coupled with recruitment of nuclear-export factor to the nascent 60S subunit.
    Sarkar A; Pech M; Thoms M; Beckmann R; Hurt E
    Nat Struct Mol Biol; 2016 Dec; 23(12):1074-1082. PubMed ID: 27775710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain organization within the nuclear export factor Mex67:Mtr2 generates an extended mRNA binding surface.
    Aibara S; Valkov E; Lamers M; Stewart M
    Nucleic Acids Res; 2015 Feb; 43(3):1927-36. PubMed ID: 25618852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural similarity in the absence of sequence homology of the messenger RNA export factors Mtr2 and p15.
    Fribourg S; Conti E
    EMBO Rep; 2003 Jul; 4(7):699-703. PubMed ID: 12835756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization of the principal mRNA-export factor Mex67-Mtr2 from Chaetomium thermophilum.
    Aibara S; Valkov E; Lamers MH; Dimitrova L; Hurt E; Stewart M
    Acta Crystallogr F Struct Biol Commun; 2015 Jul; 71(Pt 7):876-88. PubMed ID: 26144233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical cross-linking and mass spectrometry to determine the subunit interaction network in a recombinant human SAGA HAT subcomplex.
    Nguyen-Huynh NT; Sharov G; Potel C; Fichter P; Trowitzsch S; Berger I; Lamour V; Schultz P; Potier N; Leize-Wagner E
    Protein Sci; 2015 Aug; 24(8):1232-46. PubMed ID: 25753033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in protein complex analysis by chemical cross-linking coupled with mass spectrometry (CXMS) and bioinformatics.
    Tran BQ; Goodlett DR; Goo YA
    Biochim Biophys Acta; 2016 Jan; 1864(1):123-9. PubMed ID: 26025770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-linking Mass Spectrometry Analysis of the Yeast Nucleus Reveals Extensive Protein-Protein Interactions Not Detected by Systematic Two-Hybrid or Affinity Purification-Mass Spectrometry.
    Bartolec TK; Smith DL; Pang CNI; Xu YD; Hamey JJ; Wilkins MR
    Anal Chem; 2020 Jan; 92(2):1874-1882. PubMed ID: 31851481
    [No Abstract]   [Full Text] [Related]  

  • 12. Characterization of the Interaction between Arginine Methyltransferase Hmt1 and Its Substrate Npl3: Use of Multiple Cross-Linkers, Mass Spectrometric Approaches, and Software Platforms.
    Smith DL; Götze M; Bartolec TK; Hart-Smith G; Wilkins MR
    Anal Chem; 2018 Aug; 90(15):9101-9108. PubMed ID: 30004689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted Cross-Linking Mass Spectrometry on Single-Step Affinity Purified Molecular Complexes in the Yeast Saccharomyces cerevisiae.
    Trahan C; Oeffinger M
    Methods Mol Biol; 2022; 2456():185-210. PubMed ID: 35612743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry.
    Liu F; Rijkers DT; Post H; Heck AJ
    Nat Methods; 2015 Dec; 12(12):1179-84. PubMed ID: 26414014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subunit architecture of multimeric complexes isolated directly from cells.
    Hernández H; Dziembowski A; Taverner T; Séraphin B; Robinson CV
    EMBO Rep; 2006 Jun; 7(6):605-10. PubMed ID: 16729021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analysis of diverse ribonucleoprotein complexes.
    Oeffinger M; Wei KE; Rogers R; DeGrasse JA; Chait BT; Aitchison JD; Rout MP
    Nat Methods; 2007 Nov; 4(11):951-6. PubMed ID: 17922018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribonomic approaches to study the RNA-binding proteome.
    Faoro C; Ataide SF
    FEBS Lett; 2014 Oct; 588(20):3649-64. PubMed ID: 25150170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-Protein Interaction Detection Via Mass Spectrometry-Based Proteomics.
    Turriziani B; von Kriegsheim A; Pennington SR
    Adv Exp Med Biol; 2016; 919():383-396. PubMed ID: 27975227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A strategy for dissecting the architectures of native macromolecular assemblies.
    Shi Y; Pellarin R; Fridy PC; Fernandez-Martinez J; Thompson MK; Li Y; Wang QJ; Sali A; Rout MP; Chait BT
    Nat Methods; 2015 Dec; 12(12):1135-8. PubMed ID: 26436480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping protein receptor-ligand interactions via in vivo chemical crosslinking, affinity purification, and differential mass spectrometry.
    Kim KM; Yi EC; Kim Y
    Methods; 2012 Feb; 56(2):161-5. PubMed ID: 22062956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.