BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26658250)

  • 1. Summer-to-Winter Phenotypic Flexibility of Fatty Acid Transport and Catabolism in Skeletal Muscle and Heart of Small Birds.
    Zhang Y; King MO; Harmon E; Swanson DL
    Physiol Biochem Zool; 2015; 88(5):535-49. PubMed ID: 26658250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic flexibility in passerine birds: seasonal variation in fuel storage, mobilization and transport.
    Liknes ET; Guglielmo CG; Swanson DL
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Aug; 174():1-10. PubMed ID: 24704472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal variation in pectoralis muscle and heart myostatin and tolloid-like proteinases in small birds: a regulatory role for seasonal phenotypic flexibility?
    Swanson DL; King MO; Harmon E
    J Comp Physiol B; 2014 Feb; 184(2):249-58. PubMed ID: 24395519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Migration-induced variation of fatty acid transporters and cellular metabolic intensity in passerine birds.
    Zhang Y; King MO; Harmon E; Eyster K; Swanson DL
    J Comp Physiol B; 2015 Oct; 185(7):797-810. PubMed ID: 26194862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Within-winter flexibility in muscle and heart lipid transport and catabolism in passerine birds.
    Swanson DL; King MO; Culver W; Zhang Y
    J Comp Physiol B; 2019 Aug; 189(3-4):451-462. PubMed ID: 31076837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute cold and exercise training up-regulate similar aspects of fatty acid transport and catabolism in house sparrows (Passer domesticus).
    Zhang Y; Carter T; Eyster K; Swanson DL
    J Exp Biol; 2015 Dec; 218(Pt 24):3885-93. PubMed ID: 26486368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal upregulation of fatty acid transporters in flight muscles of migratory white-throated sparrows (Zonotrichia albicollis).
    McFarlan JT; Bonen A; Guglielmo CG
    J Exp Biol; 2009 Sep; 212(18):2934-40. PubMed ID: 19717675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal variation of myostatin gene expression in pectoralis muscle of house sparrows (Passer domesticus) is consistent with a role in regulating thermogenic capacity and cold tolerance.
    Swanson DL; Sabirzhanov B; Vandezande A; Clark TG
    Physiol Biochem Zool; 2009; 82(2):121-8. PubMed ID: 19199561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of training, acute exercise and dietary fatty acid composition on muscle lipid oxidative capacity in European starlings.
    Price ER; Bauchinger U; McWilliams SR; Boyles ML; Langlois LA; Gerson AR; Guglielmo CG
    J Exp Biol; 2022 Oct; 225(19):. PubMed ID: 36200468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Transcriptomics of Seasonal Phenotypic Flexibility in Two North American Songbirds.
    Cheviron ZA; Swanson DL
    Integr Comp Biol; 2017 Nov; 57(5):1040-1054. PubMed ID: 29095984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Context-dependent regulation of pectoralis myostatin and lipid transporters by temperature and photoperiod in dark-eyed juncos.
    Zhang Y; Eyster K; Swanson DL
    Curr Zool; 2018 Feb; 64(1):23-31. PubMed ID: 29492035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Within-Winter Flexibility in Muscle Masses, Myostatin, and Cellular Aerobic Metabolic Intensity in Passerine Birds.
    Swanson DL; King MO; Culver W; Zhang Y
    Physiol Biochem Zool; 2017; 90(2):210-222. PubMed ID: 28277951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotype manipulations confirm the role of pectoral muscles and haematocrit in avian maximal thermogenic capacity.
    Petit M; Vézina F
    J Exp Biol; 2014 Mar; 217(Pt 6):824-30. PubMed ID: 24198261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual variation in thermogenic capacity is correlated with flight muscle size but not cellular metabolic capacity in American goldfinches (Spinus tristis).
    Swanson DL; Zhang Y; King MO
    Physiol Biochem Zool; 2013; 86(4):421-31. PubMed ID: 23799836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate metabolism in seasonally acclimatized American goldfinches.
    Marsh RL; Dawson WR
    Am J Physiol; 1982 May; 242(5):R563-9. PubMed ID: 6211105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal acclimatization in American goldfinches: the role of the pectoralis muscle.
    Yacoe ME; Dawson WR
    Am J Physiol; 1983 Aug; 245(2):R265-71. PubMed ID: 6224430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing Winter Maximal Metabolic Rate Improves Intrawinter Survival in Small Birds.
    Petit M; Clavijo-Baquet S; Vézina F
    Physiol Biochem Zool; 2017; 90(2):166-177. PubMed ID: 28277959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal muscle ultrastructure plasticity and resistance of muscle structural changes during temperature increases in resident black-capped chickadees and rock pigeons.
    Jimenez AG; O'Connor ES; Brown KJ; Briggs CW
    J Exp Biol; 2019 Jun; 222(Pt 12):. PubMed ID: 31171604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal phenotypic flexibility of body mass, organ masses, and tissue oxidative capacity and their relationship to resting metabolic rate in Chinese bulbuls.
    Zheng WH; Liu JS; Swanson DL
    Physiol Biochem Zool; 2014; 87(3):432-44. PubMed ID: 24769707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal metabolic acclimatization in mountain chickadees and juniper titmice.
    Cooper SJ
    Physiol Biochem Zool; 2002; 75(4):386-95. PubMed ID: 12324895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.